scholarly journals Исследование внутренних напряжений в несущей ленте-подложке из нержавеющей стали AISI 310S для ВТСП проводов второго поколения методом нейтронной стресс-дифрактометрии

2020 ◽  
Vol 90 (7) ◽  
pp. 1095
Author(s):  
И.Д. Карпов ◽  
А.В. Иродова ◽  
В.С. Круглов ◽  
С.В. Шавкин ◽  
В.Т. Эм

The method of neutron stress diffractometry has been used to study a distribution of residual stresses in the stainless steel AISI 310S ribbon, of 100 μm thick and 4 mm wide, in three directions – along, across and perpendicular to rolling plane. The residual macro stresses averaged over the ribbon length of 40 cm are determined. The longitudinal, transverse and normal macro stresses are respectively –71±21 MPa, –31±16 MPa, and –11±16 MPa on one edge of the ribbon and +30±19 MPa, +64±16 MPa, and +30±16 MPa on the other edge. Such distribution of macro stresses compressing the ribbon on one edge and stretching it on the other edge is inherent for so-called crescent-shaped deformation of the ribbon – its bending in rolling plane along rolling direction. A correlation between the macro stresses magnitude and the micro stresses presence has been observed – the stronger macro stresses the higher concentration of micro stresses.

2013 ◽  
Vol 845 ◽  
pp. 765-769 ◽  
Author(s):  
Guilherme Cortelini Rosa ◽  
André J. Souza ◽  
Flávio J. Lorini

Machining performance consists to associate the optimal process and cutting parameters and maximum material removal rate with the most appropriate tool while controlling the machined surface state. This work verifies the influence of standard and wiper cutting tools on generated surface roughness and residual stress in dry finish turning operation of the martensitic stainless steel AISI 420 in a comparative way. Tests are conducted for different combinations of tool nose geometry, feed rate and depth of cut being analyzed through the Design of Experiments regarding to surface roughness parametersRaandRt. Moreover, the formation of residual stresses in the material (using the technique of X-Ray Diffraction) was evaluated after the machining process for these two cutting geometries and thereafter the result was compared between them. An ANOVA is performed to clarify the influence of cutting parameters on generated surface roughness, which outputs inform that cutting tool geometry is the most influent onRaandRt. It is concluded that analyzed wiper inserts present low performance for low feed rates. Regarding the analysis of the residual stresses it can be stated that for standard and wiper tools the values collected show that for finish turning the compression stresses were found. It can be observed that the greatest amount of compressive stress has been found for the standard tool.


2021 ◽  
Vol 91 (12) ◽  
pp. 1964
Author(s):  
А.В. Иродова ◽  
И.Д. Карпов ◽  
В.С. Круглов ◽  
В.Е. Крылов ◽  
С.В. Шавкин ◽  
...  

Using neutron diffraction we determined internal residual stress in the stainless steel AISI 310S carrier tape with a thickness of 100 μm and a width of 4 mm after mechanical polishing and the ABAD deposition of the textured YSZ buffer layer. It is shown that mechanical polishing causes a slight distension of the tape in the rolling plane. After the deposition of the YSZ layer, uniform tensile stress of 70 MPa isotropic in the rolling plane was observed inside the tape. Calculations have shown that it results from relaxation of compressive stress acting on the surface of the tape in a layer several times thicker than the YSZ layer. It is assumed that the surface of the tape is plastically deformed during the YSZ deposition.


2021 ◽  
Vol 49 (1) ◽  
pp. 87-94
Author(s):  
Kumar Barath ◽  
K.M. Aravindan ◽  
Jebaraj Vinoth ◽  
Kumar Sampath

In this work, an investigation was made to analyze the surface residual stresses on additive manufactured stainless steel AISI 316L in as-built and post-treated conditions. Direct metal laser sintering was used to fabricate the metal blocks. X-ray residual stress analysis on the as-fabricated surface revealed the presence of an inhomogeneous and irregular distribution of residual stresses in the as-built condition ranging from - 30 MPa to 111 MPa. It was mainly due to the localized laser heat source that caused variations in stresses at a lattice level. Heat treatment was performed for providing relief to the residual stress from the as-built condition showed significant relief of residual stress, which was lesser than 50% compared to as-built condition. Beneficial compressive residual stress induced by shot peening and lapping resulted in high magnitude compressive stresses on the surface. Also, homogeneous distribution of residual stress was found on the peened and lapped surface layer with an average of - 531 MPa and - 554 MPa, respectively.


Author(s):  
A. Vinoth Jebaraj ◽  
L. Ajay Kumar ◽  
C. R. Deepak

In this investigation, analysis of surface topography on Duplex Stainless Steel (DSS) AISI 2205 was carried out under the shot peened and various machined conditions. The surface profiles of the shot peened, polished, milled, ground and as received conditions were compared in micron level. In order to study the influence of shot peening on the profile of surface roughness, DSS samples were peened using S390 shots for different durations. Severe Plastic Deformation (SPD) was observed on the surface of DSS due to peening. Also, peening has more effect on the austenite phases than the ferrite phases on DSS surface. The shot peened surface profiles obtained using S390 shots offer better topography as compared with the other machined and as received surface conditions. As a part of the study, the effect of dual shot peening was inspected by peening the surface using two shots which introduce lots of micro peaks and valleys on the surface of DSS.


Alloy Digest ◽  
1983 ◽  
Vol 32 (11) ◽  

Abstract AL TECH MIAMI is both a hardenable stainless steel (AISI Type 420) and a tool steel for making molds for plastic. A major requirement for plastic mold steel is corrosion resistance. Certain plastics, such as poly-vinyl chlorides, are very corrosive and stored molds often rust from sweating water lines and/or humid environments. AL TECH MIAMI has good resistance to wear. It is melted and AOD refined to assure the mold-maker of cleanliness and freedom from internal imperfections. It provides exceptionally good polishability for lens-quality molds. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: SS-435. Producer or source: AL Tech Specialty Steel Corporation.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 530
Author(s):  
Jerzy Niagaj

The article presents results of comparative A-TIG welding tests involving selected unalloyed and fine-grained steels, as well as high-strength steel WELDOX 1300 and austenitic stainless steel AISI 304L. The tests involved the use of single ingredient activated fluxes (Cr2O3, TiO2, SiO2, Fe2O3, NaF, and AlF3). In cases of carbon and low-alloy steels, the tests revealed that the greatest increase in penetration depth was observed in the steels which had been well deoxidized and purified during their production in steelworks. The tests revealed that among the activated fluxes, the TiO2 and SiO2 oxides always led to an increase in penetration depth during A-TIG welding, regardless of the type and grade of steel. The degree of the aforesaid increase was restricted within the range of 30% to more than 200%.


2014 ◽  
Vol 1024 ◽  
pp. 239-242
Author(s):  
Zuhailawati Hussain ◽  
Emee Marina Salleh ◽  
Tran Bao Trung ◽  
Zainal Arifin Ahmad

In this study, WC-stainless steel AISI 347 hardmetal system was produced to replace WC-Co hardmetal which uses the expensive, toxic and depleted resource Co. WC, stainless steel AISI 347 and graphite powder mixture were milled in a planetary mill under argon atmosphere using a stainless steel container and balls. Carbon was added in amounts ranging from 0 wt% until 4 wt% into the composition to avoid unwanted η (Fe3W3C) phase. As-milled powder was compacted at 300 MPa and sintered in a tube furnace at 1350°C. ɳ phase was detected in compositions with 0 and 1 wt% C addition. For 2 wt% C addition, no η (Fe3W3C) phase formation was identified. However, the η phase was detected for compositions containing 3 and 4 wt% C. Maximum hardness was achieved due to the absence of η phase.


2021 ◽  
Vol 880 ◽  
pp. 23-28
Author(s):  
Warinthorn Thanakulwattana ◽  
Wasawat Nakkiew

Because of the general problem of the welding workpiece such as fatigue fracture caused by tensile residual stress lead to initial and propagation crack in the fusion zone. Thus, the mechanical surface treatment of deep rolling on Gas Tungsten Arc Welded (GTAW) surfaces of AISI 316L was studied. Deep rolling (DR) is a cold working process to induce compressive residual stress in the surface layer of the workpiece resulting in hardening deformation which increased surface hardness, and smooth surface that inhibit crack growth and improve fracture strength of materials. The present study focuses on compressive residual stress at the surface of stainless steel AISI 316L butt welded joint of GTAW. The three parameters of DR process were used; pressure 150 bar, rolling speed 400 mm/min, and step over 1.0 mm. The residual stresses analysis by X-ray diffraction with sin2Ψ method at 0, 5, 10, and 20 mm from the center of the welded bead. The results showed that the DR process on the welded of GTAW induce the minimum compressive residual stress-408.6 MPa and maximum-498.1 MPa in longitudinal direction. The results of transverse residual stress in minimum and maximum are 43.7 MPa and-34.8 MPa respectively. The FWHM of DR both longitudinal and transverse direction were increased in the same trend. Furthermore, the microhardness after DR treatment on workpiece surface layer higher than GTAW average 0.4 times.


Sign in / Sign up

Export Citation Format

Share Document