scholarly journals Синтез тонких пленок ниобия на кремнии и исследование их сверхпроводящих свойств в области размерного кроссовера

2021 ◽  
Vol 91 (2) ◽  
pp. 275
Author(s):  
И.В. Янилкин ◽  
А.И. Гумаров ◽  
А.М. Рогов ◽  
Р.В. Юсупов ◽  
Л.Р. Тагиров

Niobium films of 4–100 nm thickness were synthesized on a silicon substrate under ultrahigh vacuum conditions. Measurements of electrical resistance showed a high temperature of the superconducting transition Tc, in the range of 4.7–9.1 K, and extremely small transition widths ΔTc in the range of 260–11 mK. The dependences of Tc and ΔTc on the magnetic field were studied, and superconducting coherence lengths and mean free paths of the conduction electrons were determined for different thicknesses of the synthesized films. A specific effect of the magnetic field on ΔTc was found, which reveals a transition from three-dimensional to two-dimensional superconductivity at thicknesses below 10 nm. The dependences of Tc and ΔTc on the films thickness and the magnitude of the magnetic field are discussed in the framework of existing concepts of superconductivity in thin films of superconducting metals.

Author(s):  
Jasim Mohmed Jasim Jasim ◽  
Iryna Shvedchykova ◽  
Igor Panasiuk ◽  
Julia Romanchenko ◽  
Inna Melkonova

An approach is proposed to carry out multivariate calculations of the magnetic field distribution in the working gaps of a plate polygradient matrix of an electromagnetic separator, based on a combination of the advantages of two- and three-dimensional computer modeling. Two-dimensional geometric models of computational domains are developed, which differ in the geometric dimensions of the plate matrix elements and working air gaps. To determine the vector magnetic potential at the boundaries of two-dimensional computational domains, a computational 3D experiment is carried out. For this, three variants of the electromagnetic separator are selected, which differ in the size of the working air gaps of the polygradient matrices. For them, three-dimensional computer models are built, the spatial distribution of the magnetic field in the working intervals of the electromagnetic separator matrix and the obtained numerical values of the vector magnetic potential at the boundaries of the computational domains are investigated. The determination of the values of the vector magnetic potential for all other models is carried out by interpolation. The obtained values of the vector magnetic potential are used to set the boundary conditions in a computational 2D experiment. An approach to the choice of a rational version of a lamellar matrix is substantiated, which provides a solution to the problem according to the criterion of the effective area of the working area. Using the method of simple enumeration, a variant of the structure of a polygradient matrix with rational geometric parameters is selected. The productivity of the electromagnetic separator with rational geometric parameters of the matrix increased by 3–5 % with the same efficiency of extraction of ferromagnetic inclusions in comparison with the basic version of the device


1995 ◽  
Vol 305 ◽  
pp. 281-305 ◽  
Author(s):  
P. C. Matthews ◽  
M. R. E. Proctor ◽  
N. O. Weiss

Convection in a compressible fiuid with an imposed vertical magnetic field is studied numerically in a three-dimensional Cartesian geometry with periodic lateral boundary conditions. Attention is restricted to the mildly nonlinear regime, with parameters chosen first so that convection at onset is steady, and then so that it is oscillatory.Steady convection occurs in the form of two-dimensional rolls when the magnetic field is weak. These rolls can become unstable to a mean horizontal shear flow, which in two dimensions leads to a pulsating wave in which the direction of the mean flow reverses. In three dimensions a new pattern is found in which the alignment of the rolls and the shear flow alternates.If the magnetic field is sufficiently strong, squares or hexagons are stable at the onset of convection. Both the squares and the hexagons have an asymmetrical topology, with upflow in plumes and downflow in sheets. For the squares this involves a resonance between rolls aligned with the box and rolls aligned digonally to the box. The preference for three-dimensional flow when the field is strong is a consequence of the compressibility of the layer- for Boussinesq magnetoconvection rolls are always preferred over squares at onset.In the regime where convection is oscillatory, the preferred planform for moderate fields is found to be alternating rolls - standing waves in both horizontal directions which are out of phase. For stronger fields, both alternating rolls and two-dimensional travelling rolls are stable. As the amplitude of convection is increased, either by dcereasing the magnetic field strength or by increasing the temperature contrast, the regular planform structure seen at onset is soon destroyed by secondary instabilities.


1992 ◽  
Vol 06 (24) ◽  
pp. 1531-1534
Author(s):  
CHANGHONG ZHU

We show that for a three-dimensional non-relativistic spinor confined on a plane, the spin-up component obeys the same equation of motion as a two-dimensional spinor. Threshold energy solution is investigated when the electron is moving in the vortex field. It can be proved from the index theorem that the existence of the threshold states depends on the magnetic flux only, not on the magnetic field configuration.


The first part of the paper is a physical discussion of the way in which a magnetic field affects the stability of a fluid in motion. Particular emphasis is given to how the magnetic field affects the interaction of the disturbance with the mean motion. The second part is an analysis of the stability of plane parallel flows of fluids with finite viscosity and conductivity under the action of uniform parallel magnetic fields. We show that, in general, three-dimensional disturbances are the most unstable, thus disagreeing with the conclusion of Michael (1953) and Stuart (1954). We show how results obtained for two-dimensional disturbances can be used to calculate the most unstable three-dimensional disturbances and thence we prove that a parallel magnetic field can never completely stabilize a parallel flow.


1995 ◽  
Vol 299 ◽  
pp. 153-186 ◽  
Author(s):  
P. A. Davidson

It is well known that the imposition of a static magnetic field tends to suppress motion in an electrically conducting liquid. Here we look at the magnetic damping of liquid-mental flows where the Reynolds number is large and the magnetic Reynolds number is small. The magnetic field is taken as uniform and the fluid is either infinite in extent or else bounded by an electrically insulating surface S. Under these conditions, we find that three general principles govern the flow. First, the Lorentz force destroys kinetic energy but does not alter the net linear momentum of the fluid, nor does it change the component of angular momentum parallel to B. In certain flows, this implies that momentum, linear or angular, is conserved. Second, the Lorentz force guides the flow in such a way that the global Joule dissipation, D, decreases, and this decline in D is even more rapid than the corresponding fall in global kinetic energy, E. (Note that both D and E are quadratic in u). Third, this decline in relative dissipation, D / E, is essential to conserving momentum, and is achieved by propagating linear or angular momentum out along the magnetic field lines. In fact, this spreading of momentum along the B-lines is a diffusive process, familiar in the context of MHD turbulence. We illustrate these three principles with the aid of a number of specific examples. In increasing order of complexity we look at a spatially uniform jet evolving in time, a three-dimensional jet evolving in space, and an axisymmetric vortex evolving in both space and time. We start with a spatially uniform jet which is dissipated by the sudden application of a transverse magnetic field. This simple (perhaps even trivial) example provides a clear illustration of our three general principles. It also provides a useful stepping-stone to our second example of a steady three-dimensional jet evolving in space. Unlike the two-dimensional jets studied by previous investigators, a three-dimensional jet cannot be annihilated by magnetic braking. Rather, its cross-section deforms in such a way that the momentum flux of the jet is conserved, despite a continual decline in its energy flux. We conclude with a discussion of magnetic damping of axisymmetric vortices. As with the jet flows, the Lorentz force cannot destroy the motion, but rather rearranges the angular momentum of the flow so as to reduce the global kinetic energy. This process ceases, and the flow reaches a steady state, only when the angular momentum is uniform in the direction of the field lines. This is closely related to the tendency of magnetic fields to promote two-dimensional turbulence.


2000 ◽  
Vol 14 (25n27) ◽  
pp. 2767-2772
Author(s):  
Matteo Salvato ◽  
Carmine Attanasio ◽  
Gerardina Carbone ◽  
Rosalba Fittipaldi ◽  
Tiziana Di Luccio ◽  
...  

Resistivity measurements in external applied magnetic field up to 8.5T have been performed on Bi2Sr2CuO6+δ/CaCuO2 superconducting superlattices obtained by MBE. The magnetic field (H) vs. temperature (T) phase diagrams have been determined and the experimental data have been compared with that obtained in the case of Bi2Sr2CuO6+δ thin films deposited with the same technique. A reduction of the anisotropy has been obtained in the case of the superlattices with respect to the case of Bi2Sr2CuO6+δ thin films and a three dimensional behavior has been observed by paraconductivity measurements.


2007 ◽  
Vol 579 ◽  
pp. 383-412 ◽  
Author(s):  
ANDRÉ THESS ◽  
OLEG ZIKANOV

We report a theoretical investigation of the robustness of two-dimensional inviscid magnetohydrodynamic (MHD) flows at low magnetic Reynolds numbers with respect to three-dimensional perturbations. We use a combination of linear stability analysis and direct numerical simulations to analyse three problems, namely the flow in the interior of a triaxial ellipsoid, and two unbounded flows: a vortex with elliptical streamlines and a vortex sheet parallel to the magnetic field. The flow in a triaxial ellipsoid is found to present an exact analytical model which demonstrates both the existence of inviscid unstable three-dimensional modes and the stabilizing role of the magnetic field. The nonlinear evolution of the flow is characterized by intermittency typical of other MHD flows with long periods of nearly two-dimensional behaviour interrupted by violent three-dimensional transients triggered by the instability. We demonstrate, using the second model, that motion with elliptical streamlines perpendicular to the magnetic field becomes unstable with respect to the elliptical instability once the magnetic interaction parameter falls below a critical magnitude whose value tends to infinity as the eccentricity of the streamlines increases. Furthermore, the third model indicates that vortex sheets parallel to the magnetic field, which are unstable for any velocity and any magnetic field, emit eddies with vorticity perpendicular to the magnetic field. Whether the investigated instabilities persist in the presence of small but finite viscosity, in which case two-dimensional turbulence would represent a singular state of MHD flows, remains an open question.


2014 ◽  
Vol 761 ◽  
pp. 168-205 ◽  
Author(s):  
Alban Pothérat ◽  
Rico Klein

AbstractMagnetohydrodynamic (MHD) turbulence at low magnetic Reynolds number is experimentally investigated by studying a liquid metal flow in a cubic domain. We focus on the mechanisms that determine whether the flow is quasi-two-dimensional, three-dimensional or in any intermediate state. To this end, forcing is applied by injecting a DC current $I$ through one wall of the cube only, to drive vortices spinning along the magnetic field. Depending on the intensity of the externally applied magnetic field, these vortices extend part or all of the way through the cube. Driving the flow in this way allows us to precisely control not only the forcing intensity but also its dimensionality. A comparison with the theoretical analysis of this configuration singles out the influences of the walls and of the forcing on the flow dimensionality. Flow dimensionality is characterised in several ways. First, we show that when inertia drives three-dimensionality, the velocity near the wall where current is injected scales as $U_{b}\sim I^{2/3}$. Second, we show that when the distance $l_{z}$ over which momentum diffuses under the action of the Lorentz force (Sommeria & Moreau, J. Fluid Mech., vol. 118, 1982, pp. 507–518) reaches the channel width $h$, the velocity near the opposite wall $U_{t}$ follows a similar law with a correction factor $(1-h/l_{z})$ that measures three-dimensionality. When $l_{z}<h$, by contrast, the opposite wall has less influence on the flow and $U_{t}\sim I^{1/2}$. The central role played by the ratio $l_{z}/h$ is confirmed by experimentally verifying the scaling $l_{z}\sim N^{1/2}$ put forward by Sommeria & Moreau ($N$ is the interaction parameter) and, finally, the nature of the three-dimensionality involved is further clarified by distinguishing weak and strong three-dimensionalities previously introduced by Klein & Pothérat (Phys. Rev. Lett., vol. 104 (3), 2010, 034502). It is found that both types vanish only asymptotically in the limit $N\rightarrow \infty$. This provides evidence that because of the no-slip walls, (i) the transition between quasi-two-dimensional and three-dimensional turbulence does not result from a global instability of the flow, unlike in domains with non-dissipative boundaries (Boeck et al. Phys. Rev. Lett., vol. 101, 2008, 244501), and (ii) it does not occur simultaneously at all scales.


1971 ◽  
Vol 49 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Kanefusa Gotoh

The effect of a uniform and parallel magnetic field upon the stability of a free shear layer of an electrically conducting fluid is investigated. The equations of the velocity and the magnetic disturbances are solved numerically and it is shown that the flow is stabilized with increasing magnetic field. When the magnetic field is expressed in terms of the parameter N (= M2/R2), where M is the Hartmann number and R is the Reynolds number, the lowest critical Reynolds number is caused by the two-dimensional disturbances. So long as 0 [les ] N [les ] 0·0092 the flow is unstable at all R. For 0·0092 < N [les ] 0·0233 the flow is unstable at 0 < R < Ruc where Ruc decreases as N increases. For 0·0233 < N < 0·0295 the flow is unstable at Rlc < R < Ruc where Rlc increases with N. Lastly for N > 0·0295 the flow is stable at all R. When the magnetic field is measured by M, the lowest critical Reynolds number is still due to the two-dimensional disturbances provided 0 [les ] M [les ] 0·52, and Rc is given by the corresponding Rlc. For M > 0·52, Rc is expressed as Rc = 5·8M, and the responsible disturbance is the three-dimensional one which propagates at angle cos−1(0·52/M) to the direction of the basic flow.


Sign in / Sign up

Export Citation Format

Share Document