scholarly journals Структура и оптические характеристики пленок ниобатов бария-стронция на подложках Al-=SUB=-2-=/SUB=-O-=SUB=-3-=/SUB=-

2019 ◽  
Vol 126 (5) ◽  
pp. 568
Author(s):  
А.В. Павленко ◽  
С.В. Кара-Мурза ◽  
А.П. Корчикова ◽  
А.А. Тихий ◽  
Д.В. Стрюков ◽  
...  

AbstractThe structure and optical characteristics of thin films of relaxor ferroelectric Ba_0.5Sr_0.5Nb_2O_6 grown by RF sputtering in an oxygen atmosphere on an Al_2O_3 substrate ( c cut) have been studied. X-ray diffraction analysis shows that Ba_0.5Sr_0.5Nb_2O_6 films are c -oriented and unit-cell parameter c is 3.948(1) Å. Ellipsometric measurements confirm that SBN-50 films are characterized by a natural growth direction, which coincides with the direction of the optical crystal axis. An analysis of ellipsometric results shows that there is no transition layer at the film/substrate interface; the damaged layer on the free film surface is 7.5 nm thick, and the volume filling factor is estimated to be 0.625.

1989 ◽  
Vol 159 ◽  
Author(s):  
A. Leiberich ◽  
J. Levkoff

ABSTRACTCorrections are required for double crystal X-ray diffraction characterization of epitaxial AlxGa1-xAs layers grown on offcut GaAs (100) substrates. Double crystal X-ray diffraction measurements show that the cubic film unit cell defined by Vegard's law is triclinicly distorted and tilted with respect to the substrate unit cell. The distortion and tilt angles oppose each other defining a crystal geometry where the substrate and film <100= axes remain approximately coplanar with the surface normal. This film/substrate crystal geometry leads to formulation of a model describing heteroepitaxy on offcut (100) substrates. When film atoms are bonded to an offcut substrate, the already tetragonaly distorted film unit cell is subjected to additional cell distortions. The magnitude of this additional strain depends on where the film atoms are positioned on a substrate terrace. The first few layers of film atoms establish swain grades across individual substrate terraces. Constrained by the geometry of this interface region and driven by strain relaxation in the net growth direction, subsequent heteroepitaxy forms the measured film/substrate crystal geometry.


1995 ◽  
Vol 403 ◽  
Author(s):  
S. G. Malhotra ◽  
Z. U. Rek ◽  
S. M. Yalisove ◽  
J. C. Bilello

AbstractThe magnitude of the average stress in a thin film can be obtained by measuring the curvature of the film-substrate couple. However, the details of the strain distribution, as a function of depth through the thickness of the film, can have important consequences in governing film quality and ultimate morphology. A high-resolution x-ray diffraction method was used to determine the depth dependence of strain in a textured Mo film, with a nominal thickness of 260 nm, which was deposited by planar magnetron sputtering onto Si (100) substrates. The principal strains, resolved onto a laboratory reference frame, displayed a negligible gradient in the azimuthal directions (x and y), but displayed a large gradient in the direction normal to the film (z). A similar trend was previously observed for a 100 nm polycrystalline film, but the magnitude of the normal strain very near the free surface was about a factor of 2 less. The increase in the normal strain may be due to the development of a preferred growth direction and grain facetting. A linear elastic model was also used to determine the strains in successive slabs of the film, where strain variations between slabs were indicated.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3191
Author(s):  
Arun Kumar Mukhopadhyay ◽  
Avishek Roy ◽  
Gourab Bhattacharjee ◽  
Sadhan Chandra Das ◽  
Abhijit Majumdar ◽  
...  

We report the surface stoichiometry of Tix-CuyNz thin film as a function of film depth. Films are deposited by high power impulse (HiPIMS) and DC magnetron sputtering (DCMS). The composition of Ti, Cu, and N in the deposited film is investigated by X-ray photoelectron spectroscopy (XPS). At a larger depth, the relative composition of Cu and Ti in the film is increased compared to the surface. The amount of adventitious carbon which is present on the film surface strongly decreases with film depth. Deposited films also contain a significant amount of oxygen whose origin is not fully clear. Grazing incidence X-ray diffraction (GIXD) shows a Cu3N phase on the surface, while transmission electron microscopy (TEM) indicates a polycrystalline structure and the presence of a Ti3CuN phase.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Margaret M. Kane ◽  
Arturas Vailionis ◽  
Lauren J. Riddiford ◽  
Apurva Mehta ◽  
Alpha T. N’Diaye ◽  
...  

AbstractThe emergence of ferromagnetism in materials where the bulk phase does not show any magnetic order demonstrates that atomically precise films can stabilize distinct ground states and expands the phase space for the discovery of materials. Here, the emergence of long-range magnetic order is reported in ultrathin (111) LaNiO3 (LNO) films, where bulk LNO is paramagnetic, and the origins of this phase are explained. Transport and structural studies of LNO(111) films indicate that NiO6 octahedral distortions stabilize a magnetic insulating phase at the film/substrate interface and result in a thickness-dependent metal–insulator transition at t = 8 unit cells. Away from this interface, distortions relax and bulk-like conduction is regained. Synchrotron x-ray diffraction and dynamical x-ray diffraction simulations confirm a corresponding out-of-plane unit-cell expansion at the interface of all films. X-ray absorption spectroscopy reveals that distortion stabilizes an increased concentration of Ni2+ ions. Evidence of long-range magnetic order is found in anomalous Hall effect and magnetoresistance measurements, likely due to ferromagnetic superexchange interactions among Ni2+–Ni3+ ions. Together, these results indicate that long-range magnetic ordering and metallicity in LNO(111) films emerges from a balance among the spin, charge, lattice, and orbital degrees of freedom.


2012 ◽  
Vol 472-475 ◽  
pp. 1451-1454
Author(s):  
Xue Hui Wang ◽  
Wu Tang ◽  
Ji Jun Yang

The porous Cu film was deposited on soft PVDF substrate by magnetron sputtering at different sputtering pressure. The microstructure and electrical properties of Cu films were investigated as a function of sputtering pressure by X-ray diffraction XRD and Hall effect method. The results show that the surface morphology of Cu film is porous, and the XRD revealed that there are Cu diffraction peaks with highly textured having a Cu-(220) or a mixture of Cu-(111) and Cu-(220) at sputtering pressure 0.5 Pa. The electrical properties are also severely influenced by sputtering pressure, the resistivity of the porous Cu film is much larger than that fabricated on Si substrate. Furthermore, the resistivity increases simultaneously with the increasing of Cu film surface aperture, but the resistivity of Cu film still decreases with the increasing grain size. It can be concluded that the crystal structure is still the most important factor for the porous Cu film resistivity.


2016 ◽  
Vol 49 (1) ◽  
pp. 110-119 ◽  
Author(s):  
Nanna Wahlberg ◽  
Niels Bindzus ◽  
Sebastian Christensen ◽  
Jacob Becker ◽  
Ann-Christin Dippel ◽  
...  

A serious limitation of the all-in-vacuum diffractometer reported by Straasø, Dippel, Becker & Als-Nielsen [J. Synchrotron Rad.(2014),21, 119–126] has so far been the inability to cool samples to near-cryogenic temperatures during measurement. The problem is solved by placing the sample in a jet of helium gas cooled by liquid nitrogen. The resulting temperature change is quantified by determining the change in unit-cell parameter and atomic displacement parameter of copper. The cooling proved successful, with a resulting temperature of ∼95 (3) K. The measured powder X-ray diffraction data are of superb quality and high resolution [up to sinθ/λ = 2.2 Å−1], permitting an extensive modelling of the thermal displacement. The anharmonic displacement of copper was modelled by a Gram–Charlier expansion of the temperature factor. As expected, the corresponding probability distribution function shows an increased probability away from neighbouring atoms and a decreased probability towards them.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 325
Author(s):  
Sytle Antao

Synchrotron high-resolution powder X-ray diffraction (HRPXRD) and Rietveld structure refinements were used to examine the crystal structure of single phases and intergrowths (either two or three phases) in 13 samples of the helvine-group minerals, (Zn,Fe,Mn)8[Be6Si6O24]S2. The helvine structure was refined in the cubic space group P4¯3n. For the intergrowths, simultaneous refinements were carried out for each phase. The structural parameters for each phase in an intergrowth are only slightly different from each other. Each phase in an intergrowth has well-defined unit-cell and structural parameters that are significantly different from the three endmembers and these do not represent exsolution or immiscibility gaps in the ternary solid-solution series. The reason for the intergrowths in the helvine-group minerals is not clear considering the similar radii, identical charge, and diffusion among the interstitial M cations (Zn2+, Fe2+, and Mn2+) that are characteristic of elongated tetrahedral coordination. The difference between the radii of Zn2+ and Mn2+ cations is 10%. Depending on the availability of the M cations, intergrowths may occur as the temperature, pressure, fugacity fS2, and fluid composition change on crystallization. The Be–Si atoms are fully ordered. The Be–O and Si–O distances are nearly constant. Several structural parameters (Be–O–Si bridging angle, M–O, M–S, average <M–O/S>[4] distances, and TO4 rotational angles) vary linearly with the a unit-cell parameter across the series because of the size of the M cation.


2000 ◽  
Vol 14 (25n27) ◽  
pp. 2646-2651
Author(s):  
F. RICCI ◽  
F. CARILLO ◽  
F. LOMBARDI ◽  
F. MILETTO GRANOZIO ◽  
U. SCOTTI DI UCCIO ◽  
...  

(110) and (103) YBa 2 Cu 3 O 7 films have been grown onto exact and vicinal (110) SrTiO 3 substrates, and on vicinal (110) MgO substrates with a SrTiO 3 buffer layer. The samples are carefully characterised by reciprocal space mapping with x-ray diffraction, in order to investigate the features of the typical double domain of (110) and (103) YBa 2 Cu 3 O 7 structure. It is demonstrated that vicinal cut substrates allow to select one film/substrate epitaxial relation. The growth properties of these thin films deposited on vicinal surfaces are discussed.


1996 ◽  
Vol 11 (4) ◽  
pp. 804-812 ◽  
Author(s):  
Y. Namikawa ◽  
M. Egami ◽  
S. Koyama ◽  
Y. Shiohara ◽  
H. Kutami

Large YBa2Cu3O7−x (Y123) single crystals (larger than 13 mm cubed) have been grown along the c-axis reproducibly by the modified pulling method. The crystallinity of Y123 single crystal was investigated by x-ray diffraction and x-ray topography. Crystals grown from an MgO single crystal seed had some low angle subgrain boundaries which tilted 0.1–0.8° from each other. These grain boundaries originated from the seed crystal, and the subgrains were extended along the growth direction from the seed crystal. Y123 single crystals with no marked subgrains in the whole area were obtained by using Y123 single subgrain crystal seeds. FWHM of the x-ray rocking curve for the crystal so produced was about 0.14°, which was much better than the spectrum consisting of several separated peaks obtained from the previous crystals. Tc onset of the annealed sample was about 93.6 K, and the transition width was about 0.9 K. The low angle subgrain boundaries did not seem to be effective pinning centers for the magnetic flux.


2002 ◽  
Vol 722 ◽  
Author(s):  
Chunming Jin ◽  
Ashutosh Tiwari ◽  
A. Kvit ◽  
J. Narayan

AbstractEpitaxial ZnO films have been grown on Si(111) substrates by employing a AlN buffer layer during a pulsed laser-deposition process. The epitaxial structure of AlN on Si(111) substrate provides a template for ZnO growth. The resultant films are evaluated by transmission electron microscopy, x-ray diffraction, and electrical measurements. The results of x-ray diffraction and electron microscopy on these films clearly show the epitaxial growth of ZnO films with an orientational relationship of ZnO[0001]||Aln[0001]||Si[111] along the growth direction and ZnO[2 11 0]||AlN[2 11 0]||Si[0 11] along the in-plane direction. High electrical conductivity (103 S/m at 300 K) and a linear I-V characteristics make these epitaxial films ideal for microelectronic, optoelectronic, and transparent conducting oxide applications.


Sign in / Sign up

Export Citation Format

Share Document