EFFECT OF MOLDING PARAMETER ON INJECTION MOLDING

Author(s):  
Aditya Chhabra ◽  
Karanbir Singh ◽  
Himalaya Kanwar

In today’s world, Plastic Injection molding process is one of the most widely used processes for producing plastics products. Engineering plastics is the family capable of withstanding high loading for a period of time at elevated temperatures and in adverse environmental conditions. It exhibits a good balance of high tensile strength, shear strength, toughness to use as replacement of metals in many applications. The aim of this paper is to study the effect of various parameters on the plastic part (used in automobiles). A number of experiments has been conducted by changing the main parameters used in injection molding such as Injection pressure, holding pressure, injection speed etc. All these concerned parameters are responsible for giving the required shape to the part with minimum stresses for better life of the product. Based on above parameters, the weight of the part has been varied which will also help in dimensional stability.

Author(s):  
Jaho Seo ◽  
Amir Khajepour ◽  
Jan P. Huissoon

This study proposes an effective thermal control for plastic injection molding (polymer: Santoprene 8211-45 with density of 790 kg/m3, injection pressure: 1400 psi (9,652,660 Pa)) in a laminated die. For this purpose, a comprehensive control strategy is provided to cover various themes. First, a new method for determining the optimal sensor locations as a prerequisite step for modeling and controller design is introduced. Second, system identification through offline and online training with finite element analysis and neural network techniques are used to develop an accurate model by incorporating uncertain dynamics of the laminated die. Third, an additive feedforward control by adding direct adaptive inverse control to self-adaptive PID is developed for temperature control of cavity wall (cavity size: 52.9 × 32.07 × 16.03 mm). A verification of designed controller's performance demonstrates that the proposed strategy provides accurate online temperature tracking and faster response under thermal dynamics with various cycle-times in the injection mold process.


2011 ◽  
Vol 189-193 ◽  
pp. 537-540
Author(s):  
Jia Min Zhang ◽  
Ming Yi Zhu ◽  
Zhao Xun Lian ◽  
Rong Zhu

The use of L27 (35) orthogonal to the battery shell injection molding process is optimized. The main factors of technical parameters were determined mould temperature, melt temperature, the speed of injection, injection pressure, cooling time.On the basis of actual production, to determine the factors values of different process parameters.Combination of scrapped products in key (reduction and a high degree of tolerance deflated) tests were selected in the process parameters within the scope of the assessment. Various factors impact on the product of the total height followed by cooling time, mold temperature, melt temperature, injection pressure, injection speed from strong to weak .The best products technological parameters were determined.Good results were obtained for production.


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1348 ◽  
Author(s):  
Shih-Chih Nian ◽  
Yung-Chih Fang ◽  
Ming-Shyan Huang

Injection molding is a mature technology that has been used for decades; factors including processed raw materials, molds and machines, and the processing parameters can cause significant changes in product quality. Traditionally, researchers have attempted to improve injection molding quality by controlling screw position, injection and packing pressures, and mold and barrel temperatures. However, even when high precision control is applied, the geometry of the molded part tends to vary between different shots. Therefore, further research is needed to properly understand the factors affecting the melt in each cycle so that more effective control strategies can be implemented. In the past, injection molding was a “black box”, so when based on statistical experimental methods, computer-aided simulations or operator experience, the setting of ideal process parameters was often time consuming and limited. Using advanced sensing technology, the understanding of the injection molding process is transformed into a “grey box” that reveals the physical information about the flow behavior of the molten resin in the cavity. Using the process parameter setting data provided by the machine, this study developed a scientific method for optimal parameter adjustment, analyzing and interpreting the injection speed, injection pressure, cavity pressure, and the profile of the injection screw position. In addition, the main parameters for each phase are determined separately, including injection speed/pressure during the mold filling phase, velocity-to-pressure switching point, packing pressure and time. In this study, the IC tray was taken as an example. The experimental results show that the method can effectively reduce the warpage of the IC-tray from 0.67 mm to 0.20 mm. In addition, the parameters profiles obtained by parameter optimization can be applied for continuous mass production and process monitoring.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 23
Author(s):  
Jian Wang ◽  
Qianchao Mao ◽  
Nannan Jiang ◽  
Jinnan Chen

The reinforcement and matrix of a polymer material can be composited into a single polymer composite (SPC), which is light weight, high strength, and has easy recyclability. The insert injection molding process can be used to realize the multiple production of SPC products with a short cycle time and wide processing temperature window. However, injection molding is a very complicated process; the influence of several important parameters should be determined to help in the future tailoring of SPCs to specific applications. The effects of varying barrel temperature, injection pressure, injection speed, and holding time on the properties of the insert-injection molded polypropylene (PP) SPC parts were investigated. It was found that the sample weight and tensile properties of the PP SPCs varied in different rules with the variations of these four parameters. The barrel temperature has a significant effect, followed by the holding time and injection pressure. Suitable parameter values should be determined for enhanced mechanical properties. Based on the tensile strength, a barrel temperature of 260 °C, an injection pressure of 127.6 MPa, an injection speed of 0.18 m/s, and a holding time of 60 s were determined as the optimum processing conditions. The best tensile strength and peel strength were up to 120 MPa and 19.44 N/cm, respectively.


2007 ◽  
Vol 4 (2) ◽  
pp. 1
Author(s):  
Muhammad Hussain Ismail ◽  
Norhamidi Muhamad ◽  
Aidah Jumahat ◽  
Istikamah Subuki ◽  
Mohd Afian Omar

Metal Injection Molding (MIM) is a wellestablished technology for manufacturing a variety of complex and small precision parts. In this paper, fundamental rheological characteristics of MIM feedstock using palm stearin are theoretically analyzed and presented. The feedstock consisted of gas atomized 316L stainless steel powder at three different particle size distributions and the binder system of palm stearin (PS) and polyethylene (PE). The powder loading used was 60vol % for all samples (monosize 16 µm, monosize 45 µm, and bimodal 16 µm + 45 µm) and the binder system of 40vol %(PS/PE = 40/60). The viscosity of MIM feedstock at different temperatures and shear rates was measured and evaluated. Results showed that, the feedstock containing palm stearin exhibited suitable rheological properties by increasing the fluidity of feedstock in MIM process. The rheological results also showed a pseudoplastic flow characteristics, which poses higher value of shear sensitivity (n) and lower value of flow activation energy (E), that are both favourable for injection molding process. The green parts were successfully injected and exhibited adequate strength for handling by optimizing the injection pressure and temperature.


2020 ◽  
Vol 62 (5) ◽  
pp. 535-543
Author(s):  
Mirigul Altan ◽  
Bora Sener ◽  
Mirigul Altan

Abstract Plastic injection forming (PIF) is an alternative sheet metal forming method for complex geometrical parts with dimensions in low tolerance. This method is a combination of injection molding and hydroforming in which a molten polymer material has been injected over a sheet metal via a plastic injection molding machine. In this study, aluminum sheets 1.5 mm thick were shaped by PIF at various injection pressures, melt temperatures and injection speed. The effects of these parameters on the formability of the sheet metal were investigated using the experimental design technique. The thinning rate, flange radius and the hardness values of the shaped sheets were considered in the experimental study. Injection pressure was found to be the most effective parameter and melt temperature was the second degree effective parameter for the thinning rate. The usability of the PIF process in industrial applications as an alternative method was emphasized by comparing PIF with conventional hydroforming by means of the finite element method (Ls-Dyna). A 2.07 % deviation was observed between the FE results for hydroforming and the experimental results for PIF.


Sign in / Sign up

Export Citation Format

Share Document