scholarly journals A Racially Unbiased, Machine Learning Approach to Prediction of Mortality: Algorithm Development Study

10.2196/22400 ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. e22400
Author(s):  
Angier Allen ◽  
Samson Mataraso ◽  
Anna Siefkas ◽  
Hoyt Burdick ◽  
Gregory Braden ◽  
...  

Background Racial disparities in health care are well documented in the United States. As machine learning methods become more common in health care settings, it is important to ensure that these methods do not contribute to racial disparities through biased predictions or differential accuracy across racial groups. Objective The goal of the research was to assess a machine learning algorithm intentionally developed to minimize bias in in-hospital mortality predictions between white and nonwhite patient groups. Methods Bias was minimized through preprocessing of algorithm training data. We performed a retrospective analysis of electronic health record data from patients admitted to the intensive care unit (ICU) at a large academic health center between 2001 and 2012, drawing data from the Medical Information Mart for Intensive Care–III database. Patients were included if they had at least 10 hours of available measurements after ICU admission, had at least one of every measurement used for model prediction, and had recorded race/ethnicity data. Bias was assessed through the equal opportunity difference. Model performance in terms of bias and accuracy was compared with the Modified Early Warning Score (MEWS), the Simplified Acute Physiology Score II (SAPS II), and the Acute Physiologic Assessment and Chronic Health Evaluation (APACHE). Results The machine learning algorithm was found to be more accurate than all comparators, with a higher sensitivity, specificity, and area under the receiver operating characteristic. The machine learning algorithm was found to be unbiased (equal opportunity difference 0.016, P=.20). APACHE was also found to be unbiased (equal opportunity difference 0.019, P=.11), while SAPS II and MEWS were found to have significant bias (equal opportunity difference 0.038, P=.006 and equal opportunity difference 0.074, P<.001, respectively). Conclusions This study indicates there may be significant racial bias in commonly used severity scoring systems and that machine learning algorithms may reduce bias while improving on the accuracy of these methods.

2020 ◽  
Author(s):  
Angier Allen ◽  
Samson Mataraso ◽  
Anna Siefkas ◽  
Hoyt Burdick ◽  
Gregory Braden ◽  
...  

BACKGROUND Racial disparities in health care are well documented in the United States. As machine learning methods become more common in health care settings, it is important to ensure that these methods do not contribute to racial disparities through biased predictions or differential accuracy across racial groups. OBJECTIVE The goal of the research was to assess a machine learning algorithm intentionally developed to minimize bias in in-hospital mortality predictions between white and nonwhite patient groups. METHODS Bias was minimized through preprocessing of algorithm training data. We performed a retrospective analysis of electronic health record data from patients admitted to the intensive care unit (ICU) at a large academic health center between 2001 and 2012, drawing data from the Medical Information Mart for Intensive Care–III database. Patients were included if they had at least 10 hours of available measurements after ICU admission, had at least one of every measurement used for model prediction, and had recorded race/ethnicity data. Bias was assessed through the equal opportunity difference. Model performance in terms of bias and accuracy was compared with the Modified Early Warning Score (MEWS), the Simplified Acute Physiology Score II (SAPS II), and the Acute Physiologic Assessment and Chronic Health Evaluation (APACHE). RESULTS The machine learning algorithm was found to be more accurate than all comparators, with a higher sensitivity, specificity, and area under the receiver operating characteristic. The machine learning algorithm was found to be unbiased (equal opportunity difference 0.016, <i>P</i>=.20). APACHE was also found to be unbiased (equal opportunity difference 0.019, <i>P</i>=.11), while SAPS II and MEWS were found to have significant bias (equal opportunity difference 0.038, <i>P</i>=.006 and equal opportunity difference 0.074, <i>P</i><.001, respectively). CONCLUSIONS This study indicates there may be significant racial bias in commonly used severity scoring systems and that machine learning algorithms may reduce bias while improving on the accuracy of these methods.


2021 ◽  
Vol 10 (5) ◽  
pp. 992
Author(s):  
Martina Barchitta ◽  
Andrea Maugeri ◽  
Giuliana Favara ◽  
Paolo Marco Riela ◽  
Giovanni Gallo ◽  
...  

Patients in intensive care units (ICUs) were at higher risk of worsen prognosis and mortality. Here, we aimed to evaluate the ability of the Simplified Acute Physiology Score (SAPS II) to predict the risk of 7-day mortality, and to test a machine learning algorithm which combines the SAPS II with additional patients’ characteristics at ICU admission. We used data from the “Italian Nosocomial Infections Surveillance in Intensive Care Units” network. Support Vector Machines (SVM) algorithm was used to classify 3782 patients according to sex, patient’s origin, type of ICU admission, non-surgical treatment for acute coronary disease, surgical intervention, SAPS II, presence of invasive devices, trauma, impaired immunity, antibiotic therapy and onset of HAI. The accuracy of SAPS II for predicting patients who died from those who did not was 69.3%, with an Area Under the Curve (AUC) of 0.678. Using the SVM algorithm, instead, we achieved an accuracy of 83.5% and AUC of 0.896. Notably, SAPS II was the variable that weighted more on the model and its removal resulted in an AUC of 0.653 and an accuracy of 68.4%. Overall, these findings suggest the present SVM model as a useful tool to early predict patients at higher risk of death at ICU admission.


2020 ◽  
Vol 17 (9) ◽  
pp. 4294-4298
Author(s):  
B. R. Sunil Kumar ◽  
B. S. Siddhartha ◽  
S. N. Shwetha ◽  
K. Arpitha

This paper intends to use distinct machine learning algorithms and exploring its multi-features. The primary advantage of machine learning is, a machine learning algorithm can predict its work automatically by learning what to do with information. This paper reveals the concept of machine learning and its algorithms which can be used for different applications such as health care, sentiment analysis and many more. Sometimes the programmers will get confused which algorithm to apply for their applications. This paper provides an idea related to the algorithm used on the basis of how accurately it fits. Based on the collected data, one of the algorithms can be selected based upon its pros and cons. By considering the data set, the base model is developed, trained and tested. Then the trained model is ready for prediction and can be deployed on the basis of feasibility.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 143 ◽  
Author(s):  
J. Deepika ◽  
T. Senthil ◽  
C. Rajan ◽  
A. Surendar

With the greater development of technology and automation human history is predominantly updated. The technology movement shifted from large mainframes to PCs to cloud when computing the available data for a larger period. This has happened only due to the advent of many tools and practices, that elevated the next generation in computing. A large number of techniques has been developed so far to automate such computing. Research dragged towards training the computers to behave similar to human intelligence. Here the diversity of machine learning came into play for knowledge discovery. Machine Learning (ML) is applied in many areas such as medical, marketing, telecommunications, and stock, health care and so on. This paper presents reviews about machine learning algorithm foundations, its types and flavors together with R code and Python scripts possibly for each machine learning techniques.  


2017 ◽  
Author(s):  
Hoyt Burdick ◽  
Eduardo Pino ◽  
Denise Gabel-Comeau ◽  
Carol Gu ◽  
Heidi Huang ◽  
...  

AbstractIntroductionSepsis is a major health crisis in US hospitals, and several clinical identification systems have been designed to help care providers with early diagnosis of sepsis. However, many of these systems demonstrate low specificity or sensitivity, which limits their clinical utility. We evaluate the effects of a machine learning algodiagnostic (MLA) sepsis prediction and detection system using a before-and-after clinical study performed at Cabell Huntington Hospital (CHH) in Huntington, West Virginia. Prior to this study, CHH utilized the St. John’s Sepsis Agent (SJSA) as a rules-based sepsis detection system.MethodsThe Predictive algoRithm for EValuation and Intervention in SEpsis (PREVISE) study was carried out between July 1, 2017 and August 30, 2017. All patients over the age of 18 who were admitted to the emergency department or intensive care units at CHH were monitored during the study. We assessed pre-implementation baseline metrics during the month of July, 2017, when the SJSA was active. During implementation in the month of August, 2017, SJSA and the MLA concurrently monitored patients for sepsis risk. At the conclusion of the study period, the primary outcome of sepsis-related in-hospital mortality and secondary outcome of sepsis-related hospital length of stay were compared between the two groups.ResultsSepsis-related in-hospital mortality decreased from 3.97% to 2.64%, a 33.5% relative decrease (P = 0.038), and sepsis-related length of stay decreased from 2.99 days in the pre-implementation phase to 2.48 days in the post-implementation phase, a 17.1% relative reduction (P < 0.001).ConclusionReductions in patient mortality and length-of-stay were observed with use of a machine learning algorithm for early sepsis detection in the emergency department and intensive care units at Cabell Huntington Hospital, and may present a method for improving patient outcomes.Trial RegistrationClinicalTrials.gov, NCT03235193, retrospectively registered on July 27th 2017.


2021 ◽  
Vol 186 (Supplement_1) ◽  
pp. 273-280
Author(s):  
Christopher Nemeth ◽  
Adam Amos-Binks ◽  
Christie Burris ◽  
Natalie Keeney ◽  
Yuliya Pinevich ◽  
...  

ABSTRACT Introduction The emergence of more complex Prolonged Field Care in austere settings and the need to assist inexperienced providers’ ability to treat patients create an urgent need for effective tools to support care. We report on a project to develop a phone-/tablet-based decision support system for prehospital tactical combat casualty care that collects physiologic and other clinical data and uses machine learning to detect and differentiate shock manifestation. Materials and Methods Software interface development methods included literature review, rapid prototyping, and subject matter expert design requirements reviews. Machine learning algorithm methods included development of a model trained on publicly available Medical Information Mart for Intensive Care data, then on de-identified data from Mayo Clinic Intensive Care Unit. Results The project team interviewed 17 Army, Air Force, and Navy medical subject matter experts during design requirements review sessions. They had an average of 17 years of service in military medicine and an average of 4 deployments apiece and all had performed tactical combat casualty care on live patients during deployment. Comments provided requirements for shock identification and management in prehospital settings, including support for indication of shock probability and shock differentiation. The machine learning algorithm based on logistic regression performed best among other algorithms we tested and was able to predict shock onset 90 minutes before it occurred with better than 75% accuracy in the test dataset. Conclusions We expect the Trauma Triage, Treatment, and Training Decision Support system will augment a medic’s ability to make informed decisions based on salient patient data and to diagnose multiple types of shock through remotely trained, field deployed ML models.


Author(s):  
Ward H. van der Ven ◽  
Lotte E. Terwindt ◽  
Nurseda Risvanoglu ◽  
Evy L. K. Ie ◽  
Marije Wijnberge ◽  
...  

AbstractThe Hypotension Prediction Index (HPI) is a commercially available machine-learning algorithm that provides warnings for impending hypotension, based on real-time arterial waveform analysis. The HPI was developed with arterial waveform data of surgical and intensive care unit (ICU) patients, but has never been externally validated in the latter group. In this study, we evaluated diagnostic ability of the HPI with invasively collected arterial blood pressure data in 41 patients with COVID-19 admitted to the ICU for mechanical ventilation. Predictive ability was evaluated at HPI thresholds from 0 to 100, at incremental intervals of 5. After exceeding the studied threshold, the next 20 min were screened for positive (mean arterial pressure (MAP) < 65 mmHg for at least 1 min) or negative (absence of MAP < 65 mmHg for at least 1 min) events. Subsequently, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and time to event were determined for every threshold. Almost all patients (93%) experienced at least one hypotensive event. Median number of events was 21 [7–54] and time spent in hypotension was 114 min [20–303]. The optimal threshold was 90, with a sensitivity of 0.91 (95% confidence interval 0.81–0.98), specificity of 0.87 (0.81–0.92), PPV of 0.69 (0.61–0.77), NPV of 0.99 (0.97–1.00), and median time to event of 3.93 min (3.72–4.15). Discrimination ability of the HPI was excellent, with an area under the curve of 0.95 (0.93–0.97). This validation study shows that the HPI correctly predicts hypotension in mechanically ventilated COVID-19 patients in the ICU, and provides a basis for future studies to assess whether hypotension can be reduced in ICU patients using this algorithm.


2017 ◽  
Author(s):  
Sujay Kakarmath ◽  
Sara Golas ◽  
Jennifer Felsted ◽  
Joseph Kvedar ◽  
Kamal Jethwani ◽  
...  

BACKGROUND Big data solutions, particularly machine learning predictive algorithms, have demonstrated the ability to unlock value from data in real time in many settings outside of health care. Rapid growth in electronic medical record adoption and the shift from a volume-based to a value-based reimbursement structure in the US health care system has spurred investments in machine learning solutions. Machine learning methods can be used to build flexible, customized, and automated predictive models to optimize resource allocation and improve the efficiency and quality of health care. However, these models are prone to the problems of overfitting, confounding, and decay in predictive performance over time. It is, therefore, necessary to evaluate machine learning–based predictive models in an independent dataset before they can be adopted in the clinical practice. In this paper, we describe the protocol for independent, prospective validation of a machine learning–based model trained to predict the risk of 30-day re-admission in patients with heart failure. OBJECTIVE This study aims to prospectively validate a machine learning–based predictive model for inpatient admissions in patients with heart failure by comparing its predictions of risk for 30-day re-admissions against outcomes observed prospectively in an independent patient cohort. METHODS All adult patients with heart failure who are discharged alive from an inpatient admission will be prospectively monitored for 30-day re-admissions through reports generated by the electronic medical record system. Of these, patients who are part of the training dataset will be excluded to avoid information leakage to the algorithm. An expected sample size of 1228 index admissions will be required to observe a minimum of 100 30-day re-admission events. Deidentified structured and unstructured data will be fed to the algorithm, and its prediction will be recorded. The overall model performance will be assessed using the concordance statistic. Furthermore, multiple discrimination thresholds for screening high-risk patients will be evaluated according to the sensitivity, specificity, predictive values, and estimated cost savings to our health care system. RESULTS The project received funding in April 2017 and data collection began in June 2017. Enrollment was completed in July 2017. Data analysis is currently underway, and the first results are expected to be submitted for publication in October 2018. CONCLUSIONS To the best of our knowledge, this is one of the first studies to prospectively evaluate a predictive machine learning algorithm in a real-world setting. Findings from this study will help to measure the robustness of predictions made by machine learning algorithms and set a realistic benchmark for expectations of gains that can be made through its application to health care. REGISTERED REPORT IDENTIFIER RR1-10.2196/9466


2018 ◽  
Author(s):  
C.H.B. van Niftrik ◽  
F. van der Wouden ◽  
V. Staartjes ◽  
J. Fierstra ◽  
M. Stienen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document