scholarly journals Cox Proportional Hazard Regression Versus a Deep Learning Algorithm in the Prediction of Dementia: An Analysis Based on Periodic Health Examination (Preprint)

2018 ◽  
Author(s):  
Woo Jung Kim ◽  
Ji Min Sung ◽  
David Sung ◽  
Myeong-Hun Chae ◽  
Suk Kyoon An ◽  
...  

BACKGROUND With the increase in the world’s aging population, there is a growing need to prevent and predict dementia among the general population. The availability of national time-series health examination data in South Korea provides an opportunity to use deep learning algorithm, an artificial intelligence technology, to expedite the analysis of mass and sequential data. OBJECTIVE This study aimed to compare the discriminative accuracy between a time-series deep learning algorithm and conventional statistical methods to predict all-cause dementia and Alzheimer dementia using periodic health examination data. METHODS Diagnostic codes in medical claims data from a South Korean national health examination cohort were used to identify individuals who developed dementia or Alzheimer dementia over a 10-year period. As a result, 479,845 and 465,081 individuals, who were aged 40 to 79 years and without all-cause dementia and Alzheimer dementia, respectively, were identified at baseline. The performance of the following 3 models was compared with predictions of which individuals would develop either type of dementia: Cox proportional hazards model using only baseline data (HR-B), Cox proportional hazards model using repeated measurements (HR-R), and deep learning model using repeated measurements (DL-R). RESULTS The discrimination indices (95% CI) for the HR-B, HR-R, and DL-R models to predict all-cause dementia were 0.84 (0.83-0.85), 0.87 (0.86-0.88), and 0.90 (0.90-0.90), respectively, and those to predict Alzheimer dementia were 0.87 (0.86-0.88), 0.90 (0.88-0.91), and 0.91 (0.91-0.91), respectively. The DL-R model showed the best performance, followed by the HR-R model, in predicting both types of dementia. The DL-R model was superior to the HR-R model in all validation groups tested. CONCLUSIONS A deep learning algorithm using time-series data can be an accurate and cost-effective method to predict dementia. A combination of deep learning and proportional hazards models might help to enhance prevention strategies for dementia.

10.2196/13139 ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. e13139 ◽  
Author(s):  
Woo Jung Kim ◽  
Ji Min Sung ◽  
David Sung ◽  
Myeong-Hun Chae ◽  
Suk Kyoon An ◽  
...  

Background With the increase in the world’s aging population, there is a growing need to prevent and predict dementia among the general population. The availability of national time-series health examination data in South Korea provides an opportunity to use deep learning algorithm, an artificial intelligence technology, to expedite the analysis of mass and sequential data. Objective This study aimed to compare the discriminative accuracy between a time-series deep learning algorithm and conventional statistical methods to predict all-cause dementia and Alzheimer dementia using periodic health examination data. Methods Diagnostic codes in medical claims data from a South Korean national health examination cohort were used to identify individuals who developed dementia or Alzheimer dementia over a 10-year period. As a result, 479,845 and 465,081 individuals, who were aged 40 to 79 years and without all-cause dementia and Alzheimer dementia, respectively, were identified at baseline. The performance of the following 3 models was compared with predictions of which individuals would develop either type of dementia: Cox proportional hazards model using only baseline data (HR-B), Cox proportional hazards model using repeated measurements (HR-R), and deep learning model using repeated measurements (DL-R). Results The discrimination indices (95% CI) for the HR-B, HR-R, and DL-R models to predict all-cause dementia were 0.84 (0.83-0.85), 0.87 (0.86-0.88), and 0.90 (0.90-0.90), respectively, and those to predict Alzheimer dementia were 0.87 (0.86-0.88), 0.90 (0.88-0.91), and 0.91 (0.91-0.91), respectively. The DL-R model showed the best performance, followed by the HR-R model, in predicting both types of dementia. The DL-R model was superior to the HR-R model in all validation groups tested. Conclusions A deep learning algorithm using time-series data can be an accurate and cost-effective method to predict dementia. A combination of deep learning and proportional hazards models might help to enhance prevention strategies for dementia.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Damir Vrabac ◽  
Akshay Smit ◽  
Rebecca Rojansky ◽  
Yasodha Natkunam ◽  
Ranjana H. Advani ◽  
...  

AbstractDiffuse Large B-Cell Lymphoma (DLBCL) is the most common non-Hodgkin lymphoma. Though histologically DLBCL shows varying morphologies, no morphologic features have been consistently demonstrated to correlate with prognosis. We present a morphologic analysis of histology sections from 209 DLBCL cases with associated clinical and cytogenetic data. Duplicate tissue core sections were arranged in tissue microarrays (TMAs), and replicate sections were stained with H&E and immunohistochemical stains for CD10, BCL6, MUM1, BCL2, and MYC. The TMAs are accompanied by pathologist-annotated regions-of-interest (ROIs) that identify areas of tissue representative of DLBCL. We used a deep learning model to segment all tumor nuclei in the ROIs, and computed several geometric features for each segmented nucleus. We fit a Cox proportional hazards model to demonstrate the utility of these geometric features in predicting survival outcome, and found that it achieved a C-index (95% CI) of 0.635 (0.574,0.691). Our finding suggests that geometric features computed from tumor nuclei are of prognostic importance, and should be validated in prospective studies.


2020 ◽  
Vol 12 (15) ◽  
pp. 6143
Author(s):  
Min-Seung Kim ◽  
Jeong-Hee Lee ◽  
Yong-Ju Jang ◽  
Chan-Ho Lee ◽  
Ji-Hye Choi ◽  
...  

Due to recent advancements in industrialization, climate change and overpopulation, air pollution has become an issue of global concern and air quality is being highlighted as a social issue. Public interest and concern over respiratory health are increasing in terms of a high reliability of a healthy life or the social sustainability of human beings. Air pollution can have various adverse or deleterious effects on human health. Respiratory diseases such as asthma, the subject of this study, are especially regarded as ‘directly affected’ by air pollution. Since such pollution is derived from the combined effects of atmospheric pollutants and meteorological environmental factors, and it is not easy to estimate its influence on feasible respiratory diseases in various atmospheric environments. Previous studies have used clinical and cohort data based on relatively a small number of samples to determine how atmospheric pollutants affect diseases such as asthma. This has significant limitations in that each sample of the collections is likely to produce inconsistent results and it is difficult to attempt the experiments and studies other than by those in the medical profession. This study mainly focuses on predicting the actual asthmatic occurrence while utilizing and analyzing the data on both the atmospheric and meteorological environment officially released by the government. We used one of the advanced analytic models, often referred to as the vector autoregressive model (VAR), which traditionally has an advantage in multivariate time-series analysis to verify that each variable has a significant causal effect on the asthmatic occurrence. Next, the VAR model was applied to a deep learning algorithm to find a prediction model optimized for the prediction of asthmatic occurrence. The average error rate of the hybrid deep neural network (DNN) model was numerically verified to be about 8.17%, indicating better performance than other time-series algorithms. The proposed model can help streamline the national health and medical insurance system and health budget management in South Korea much more effectively. It can also provide efficiency in the deployment and management of the supply and demand of medical personnel in hospitals. In addition, it can contribute to the promotion of national health, enabling advance alerts of the risk of outbreaks by the atmospheric environment for chronic asthma patients. Furthermore, the theoretical methodologies, experimental results and implications of this study will be able to contribute to our current issues of global change and development in that the meteorological and environmental data-driven, deep-learning prediction model proposed hereby would put forward a macroscopic directionality which leads to sustainable public health and sustainability science.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Changro Lee ◽  
Keith Key-Ho Park

PurposeIt is important to forecast local trading volumes as well as global trading volumes because the real estate market is always characterized as a localized market. The house trading volume at the local level is forecast through appropriate models to enhance the predictive accuracy.Design/methodology/approachFour representative housing submarkets in South Korea are selected, and their trading volumes are forecast. A well-established time-series model and a deep learning algorithm are employed: the autoregressive integrated moving average (ARIMA) model and the recurrent neural network (RNN), respectively. The trading volumes in adjacent areas are utilized as covariates, and an ensemble prediction is applied additionally to improve the model performance.FindingsThe results indicate no significant difference in prediction performance between the ARIMA model and the RNN, which can be attributed to the insufficient amount of data used. It is discovered that the spillover effects of trading volumes across the study areas can be exploited to improve the predictive accuracy, and that the diversity of the predicted values from the candidate models can be used to increase the forecasting accuracy further.Originality/valueWhereas property prices have been investigated extensively, the discussion on forecasting trading activity of properties is limited in the literature. The results of this study are expected to promote more interest in adopting a local perspective and using a diversity of predicted values when forecasting house trading volumes.


Author(s):  
P Sai Shankar ◽  
M Krishna Reddy

The primary object of this paper is to compare the traditional time series models with deep learning algorithm. The ARIMA model is developed to forecast Indian Gold prices using daily data for the period 2016 to 2020 obtained from World Gold Council. We fitted the ARIMA (2,1,2) model which exhibited the least AIC values. In the meanwhile, MLP, CNN and LSTM models are also examined to forecast the gold prices in India. Mean absolute error, mean absolute percentage error and root mean squared errors used to evaluate the forecasting performance of the models. Hence, LSTM model superior than that of the other three models for forecasting the gold prices in India.


GigaScience ◽  
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Xinying Fang ◽  
Yu Liu ◽  
Zhijie Ren ◽  
Yuheng Du ◽  
Qianhui Huang ◽  
...  

Abstract Background previously we developed Lilikoi, a personalized pathway-based method to classify diseases using metabolomics data. Given the new trends of computation in the metabolomics field, it is important to update Lilikoi software. Results here we report the next version of Lilikoi as a significant upgrade. The new Lilikoi v2.0 R package has implemented a deep learning method for classification, in addition to popular machine learning methods. It also has several new modules, including the most significant addition of prognosis prediction, implemented by Cox-proportional hazards model and the deep learning–based Cox-nnet model. Additionally, Lilikoi v2.0 supports data preprocessing, exploratory analysis, pathway visualization, and metabolite pathway regression. Conculsion Lilikoi v2.0 is a modern, comprehensive package to enable metabolomics analysis in R programming environment.


Crisis ◽  
2018 ◽  
Vol 39 (1) ◽  
pp. 27-36 ◽  
Author(s):  
Kuan-Ying Lee ◽  
Chung-Yi Li ◽  
Kun-Chia Chang ◽  
Tsung-Hsueh Lu ◽  
Ying-Yeh Chen

Abstract. Background: We investigated the age at exposure to parental suicide and the risk of subsequent suicide completion in young people. The impact of parental and offspring sex was also examined. Method: Using a cohort study design, we linked Taiwan's Birth Registry (1978–1997) with Taiwan's Death Registry (1985–2009) and identified 40,249 children who had experienced maternal suicide (n = 14,431), paternal suicide (n = 26,887), or the suicide of both parents (n = 281). Each exposed child was matched to 10 children of the same sex and birth year whose parents were still alive. This yielded a total of 398,081 children for our non-exposed cohort. A Cox proportional hazards model was used to compare the suicide risk of the exposed and non-exposed groups. Results: Compared with the non-exposed group, offspring who were exposed to parental suicide were 3.91 times (95% confidence interval [CI] = 3.10–4.92 more likely to die by suicide after adjusting for baseline characteristics. The risk of suicide seemed to be lower in older male offspring (HR = 3.94, 95% CI = 2.57–6.06), but higher in older female offspring (HR = 5.30, 95% CI = 3.05–9.22). Stratified analyses based on parental sex revealed similar patterns as the combined analysis. Limitations: As only register-­based data were used, we were not able to explore the impact of variables not contained in the data set, such as the role of mental illness. Conclusion: Our findings suggest a prominent elevation in the risk of suicide among offspring who lost their parents to suicide. The risk elevation differed according to the sex of the afflicted offspring as well as to their age at exposure.


Sign in / Sign up

Export Citation Format

Share Document