scholarly journals Current Status and Future Challenges of Sleep Monitoring Systems: Systematic Review (Preprint)

2020 ◽  
Author(s):  
Qiang Pan ◽  
Damien Brulin ◽  
Eric Campo

BACKGROUND Sleep is essential for human health. Considerable effort has been put into academic and industrial research and in the development of wireless body area networks for sleep monitoring in terms of nonintrusiveness, portability, and autonomy. With the help of rapid advances in smart sensing and communication technologies, various sleep monitoring systems (hereafter, sleep monitoring systems) have been developed with advantages such as being low cost, accessible, discreet, contactless, unmanned, and suitable for long-term monitoring. OBJECTIVE This paper aims to review current research in sleep monitoring to serve as a reference for researchers and to provide insights for future work. Specific selection criteria were chosen to include articles in which sleep monitoring systems or devices are covered. METHODS This review investigates the use of various common sensors in the hardware implementation of current sleep monitoring systems as well as the types of parameters collected, their position in the body, the possible description of sleep phases, and the advantages and drawbacks. In addition, the data processing algorithms and software used in different studies on sleep monitoring systems and their results are presented. This review was not only limited to the study of laboratory research but also investigated the various popular commercial products available for sleep monitoring, presenting their characteristics, advantages, and disadvantages. In particular, we categorized existing research on sleep monitoring systems based on how the sensor is used, including the number and type of sensors, and the preferred position in the body. In addition to focusing on a specific system, issues concerning sleep monitoring systems such as privacy, economic, and social impact are also included. Finally, we presented an original sleep monitoring system solution developed in our laboratory. RESULTS By retrieving a large number of articles and abstracts, we found that hotspot techniques such as big data, machine learning, artificial intelligence, and data mining have not been widely applied to the sleep monitoring research area. Accelerometers are the most commonly used sensor in sleep monitoring systems. Most commercial sleep monitoring products cannot provide performance evaluation based on gold standard polysomnography. CONCLUSIONS Combining hotspot techniques such as big data, machine learning, artificial intelligence, and data mining with sleep monitoring may be a promising research approach and will attract more researchers in the future. Balancing user acceptance and monitoring performance is the biggest challenge in sleep monitoring system research.

10.2196/20921 ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. e20921
Author(s):  
Qiang Pan ◽  
Damien Brulin ◽  
Eric Campo

Background Sleep is essential for human health. Considerable effort has been put into academic and industrial research and in the development of wireless body area networks for sleep monitoring in terms of nonintrusiveness, portability, and autonomy. With the help of rapid advances in smart sensing and communication technologies, various sleep monitoring systems (hereafter, sleep monitoring systems) have been developed with advantages such as being low cost, accessible, discreet, contactless, unmanned, and suitable for long-term monitoring. Objective This paper aims to review current research in sleep monitoring to serve as a reference for researchers and to provide insights for future work. Specific selection criteria were chosen to include articles in which sleep monitoring systems or devices are covered. Methods This review investigates the use of various common sensors in the hardware implementation of current sleep monitoring systems as well as the types of parameters collected, their position in the body, the possible description of sleep phases, and the advantages and drawbacks. In addition, the data processing algorithms and software used in different studies on sleep monitoring systems and their results are presented. This review was not only limited to the study of laboratory research but also investigated the various popular commercial products available for sleep monitoring, presenting their characteristics, advantages, and disadvantages. In particular, we categorized existing research on sleep monitoring systems based on how the sensor is used, including the number and type of sensors, and the preferred position in the body. In addition to focusing on a specific system, issues concerning sleep monitoring systems such as privacy, economic, and social impact are also included. Finally, we presented an original sleep monitoring system solution developed in our laboratory. Results By retrieving a large number of articles and abstracts, we found that hotspot techniques such as big data, machine learning, artificial intelligence, and data mining have not been widely applied to the sleep monitoring research area. Accelerometers are the most commonly used sensor in sleep monitoring systems. Most commercial sleep monitoring products cannot provide performance evaluation based on gold standard polysomnography. Conclusions Combining hotspot techniques such as big data, machine learning, artificial intelligence, and data mining with sleep monitoring may be a promising research approach and will attract more researchers in the future. Balancing user acceptance and monitoring performance is the biggest challenge in sleep monitoring system research.


Author(s):  
Ali Hosseinzadeh ◽  
S. A. Edalatpanah

Learning is the ability to improve behavior based on former experiences and observations. Nowadays, mankind continuously attempts to train computers for his purpose, and make them smarter through trainings and experiments. Learning machines are a branch of artificial intelligence with the aim of reaching machines able to extract knowledge (learning) from the environment. Classical, fuzzy classification, as a subcategory of machine learning, has an important role in reaching these goals in this area. In the present chapter, we undertake to elaborate and explain some useful and efficient methods of classical versus fuzzy classification. Moreover, we compare them, investigating their advantages and disadvantages.


Author(s):  
Oleh Duma ◽  
◽  
M. Melnyk ◽  

Nowadays, marketing research is increasingly important for the success of enterprises. Conducting marketing research reduces the risk of making wrong decisions in the analysis and development of marketing strategies, planning and control of marketing activities. The article provides an overview of the emergence of marketing research, explores the latest methods of marketing research, their advantages and disadvantages, the possibility of its application at different stages of marketing activities. Scientific approaches to the interpretation of the concepts "marketing research", "methods of marketing research" are systematized. The latest methods of marketing research that widely use AI, Big Data, ML, TRI * M, have been studied. The technologies of mobile advertising, areas of use of artificial intelligence, the essence and features of the formation of Big Data and machine learning were researched in the article. The benefits of using artificial intelligence, big data and machine learning to conduct marketing research were researched in the article. Analytical materials are confirmed by cases from the practice of marketing research. All research outcomes were proved by cases of Independent Media, TNS Ukraine, British Council, Chat fuel and Coca - Cola. The scheme of the marketing research process is supplemented by the possibilities of applying the latest technologies, which are grouped by stages. Any marketing research is a sequence of steps. Each of them uses a set of tools that provide collection, processing and analysis of data about the target market, customers, or economic processes. Each of these stages can be implemented using the modern technologies that are widely used in various spheres of human life. The directions of application the artificial intelligence, Big data, machine learning for carrying out office researches, field researches, pilot researches and a method of focus groups are offered. The analysis of realization of methods of marketing researches on the basis of Big Data, AI, ML is carried out.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ashwin A. Phatak ◽  
Franz-Georg Wieland ◽  
Kartik Vempala ◽  
Frederik Volkmar ◽  
Daniel Memmert

AbstractWith the rising amount of data in the sports and health sectors, a plethora of applications using big data mining have become possible. Multiple frameworks have been proposed to mine, store, preprocess, and analyze physiological vitals data using artificial intelligence and machine learning algorithms. Comparatively, less research has been done to collect potentially high volume, high-quality ‘big data’ in an organized, time-synchronized, and holistic manner to solve similar problems in multiple fields. Although a large number of data collection devices exist in the form of sensors. They are either highly specialized, univariate and fragmented in nature or exist in a lab setting. The current study aims to propose artificial intelligence-based body sensor network framework (AIBSNF), a framework for strategic use of body sensor networks (BSN), which combines with real-time location system (RTLS) and wearable biosensors to collect multivariate, low noise, and high-fidelity data. This facilitates gathering of time-synchronized location and physiological vitals data, which allows artificial intelligence and machine learning (AI/ML)-based time series analysis. The study gives a brief overview of wearable sensor technology, RTLS, and provides use cases of AI/ML algorithms in the field of sensor fusion. The study also elaborates sample scenarios using a specific sensor network consisting of pressure sensors (insoles), accelerometers, gyroscopes, ECG, EMG, and RTLS position detectors for particular applications in the field of health care and sports. The AIBSNF may provide a solid blueprint for conducting research and development, forming a smooth end-to-end pipeline from data collection using BSN, RTLS and final stage analytics based on AI/ML algorithms.


2020 ◽  
Vol 18 (3) ◽  
pp. 465
Author(s):  
Diana Rino Putri ◽  
Nurafni Eltivia ◽  
Ari Kamayanti ◽  
Jaswadi Jaswadi

In developing countries such as Indonesia, a large number of academics are unfamiliar with the true meaning of terms such as Big Data, Exabyte, Petabyte, Brontobyte, Artificial Intelligence, Machine Learning, Data Mining, Data Warehousing, Distributed Processing, Grid Computing and Cloud Computing. In this paper, we report the results of a survey carried out to ascertain the current level of awareness regarding Big Data among academics in Vocational College. Respondents to a questionnaire formulated for this purpose. Results of the survey seem to indicate that there is a need for multi-faceted efforts aimed at creating awareness regarding Big Data, the related technologies, challenges and future prospects.


2021 ◽  
pp. 54-57
Author(s):  
Aarush Shah

This paper provides a critical evaluation of the use of Articial Intelligence in laparoscopic surgery. It aims to evaluate and identify the feasibility of implementing machine learning in existing surgical robots to perform autonomous surgery. More specically, it looks at whether a machine learning algorithm, given a set of simple instructions, can perform a laparoscopic cholecystectomy autonomously. It evaluates the ability of such an algorithm to identify various parts of the body during the surgery and whether it can follow short instructions step-by-step in an organised manner to conduct the surgery. The paper also considers the feasibility of implementing such an algorithm in an existing surgical robot such as the da Vinci Xi. The paper begins by evaluating the advantages and disadvantages of a robotic cholecystectomy. It looks at the various machines used for this purpose and assesses their abilities and limitations. It then aims to identify which of these machines is most suitable for performing autonomous surgery using machine learning. It then looks at the current use of autonomous surgery in the medical eld and its implementation to date. It evaluates which algorithms are suitable for this purpose and to what extent they can function. Finally, it gives the limitations of this method and the unexplored factors of this research


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 561
Author(s):  
Taehee Lee ◽  
Chanjun Chun ◽  
Seung-Ki Ryu

Road surfaces should be maintained in excellent condition to ensure the safety of motorists. To this end, there exist various road-surface monitoring systems, each of which is known to have specific advantages and disadvantages. In this study, a smartphone-based dual-acquisition method system capable of acquiring images of road-surface anomalies and measuring the acceleration of the vehicle upon their detection was developed to explore the complementarity benefits of the two different methods. A road test was conducted in which 1896 road-surface images and corresponding three-axis acceleration data were acquired. All images were classified based on the presence and type of anomalies, and histograms of the maximum variations in the acceleration in the gravitational direction were comparatively analyzed. When the types of anomalies were not considered, it was difficult to identify their effects using the histograms. The differences among histograms became evident upon consideration of whether the vehicle wheels passed over the anomalies, and when excluding longitudinal anomalies that caused minor changes in acceleration. Although the image-based monitoring system used in this research provided poor performance on its own, the severity of road-surface anomalies was accurately inferred using the specific range of the maximum variation of acceleration in the gravitational direction.


Proceedings ◽  
2021 ◽  
Vol 74 (1) ◽  
pp. 24
Author(s):  
Eduard Alexandru Stoica ◽  
Daria Maria Sitea

Nowadays society is profoundly changed by technology, velocity and productivity. While individuals are not yet prepared for holographic connection with banks or financial institutions, other innovative technologies have been adopted. Lately, a new world has been launched, personalized and adapted to reality. It has emerged and started to govern almost all daily activities due to the five key elements that are foundations of the technology: machine to machine (M2M), internet of things (IoT), big data, machine learning and artificial intelligence (AI). Competitive innovations are now on the market, helping with the connection between investors and borrowers—notably crowdfunding and peer-to-peer lending. Blockchain technology is now enjoying great popularity. Thus, a great part of the focus of this research paper is on Elrond. The outcomes highlight the relevance of technology in digital finance.


Author(s):  
Bruce Mellado ◽  
Jianhong Wu ◽  
Jude Dzevela Kong ◽  
Nicola Luigi Bragazzi ◽  
Ali Asgary ◽  
...  

COVID-19 is imposing massive health, social and economic costs. While many developed countries have started vaccinating, most African nations are waiting for vaccine stocks to be allocated and are using clinical public health (CPH) strategies to control the pandemic. The emergence of variants of concern (VOC), unequal access to the vaccine supply and locally specific logistical and vaccine delivery parameters, add complexity to national CPH strategies and amplify the urgent need for effective CPH policies. Big data and artificial intelligence machine learning techniques and collaborations can be instrumental in an accurate, timely, locally nuanced analysis of multiple data sources to inform CPH decision-making, vaccination strategies and their staged roll-out. The Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC) has been established to develop and employ machine learning techniques to design CPH strategies in Africa, which requires ongoing collaboration, testing and development to maximize the equity and effectiveness of COVID-19-related CPH interventions.


Sign in / Sign up

Export Citation Format

Share Document