scholarly journals Using wearable activity trackers to predict Type-2 Diabetes: A machine learning-based cross-sectional study of the UK Biobank accelerometer cohort (Preprint)

2020 ◽  
Author(s):  
Benjamin Lam ◽  
Michael Catt ◽  
Sophie Cassidy ◽  
Jaume Bacardit ◽  
Philip Darke ◽  
...  

BACKGROUND Between 2013 and 2015, the UK Biobank collected accelerometer traces using wrist-worn triaxial accelerometers for 103,712 volunteers aged between 40 and 69, for one week each. This dataset has been used in the past to verify that individuals with chronic diseases exhibit reduced activity levels compared to healthy populations. Yet, the dataset is likely to be noisy, as the devices were allocated to participants without a specific set of inclusion criteria, and the traces reflect uncontrolled free-living conditions. OBJECTIVE To determine the extent to which accelerometer traces can be used to distinguish individuals with Type-2 Diabetes (T2D) from normoglycaemic controls, and to quantify their limitations. METHODS Supervised machine learning classifiers were trained using the different sets of features, to segregate T2D positive individuals from normoglycaemic individuals. Multiple criteria, based on a combination of self-assessment UKBiobank variables and primary care health records linked to the participants in UKBiobank, were used to identify 3,103 individuals in this population who have T2D. The remaining non-diabetic 19,852 participants were further scored on their physical activity impairment severity levels based on other conditions found in their primary care data, and those likely to have been physically impaired at the time were excluded. Physical activity features were first extracted from the raw accelerometer traces dataset for each participant, using an algorithm that extends the previously developed Biobank Accelerometry Analysis toolkit from Oxford University [1]. These features were complemented by a selected collection of socio-demographic and lifestyle features available from UK Biobank. RESULTS Three types of classifiers were tested, with AUC close to[0.86; 95% CI: .85-.87] for all three, and F1 scores in the range [.80,.82] for T2D positives and [.73,.74] for controls. Results obtained using non-physically impaired controls were compared to highly physically impaired controls, to test the hypothesis that non-diabetes conditions reduce classifier performance. Models built using a training set that includes highly impaired controls with other conditions had worse performance: AUC [.75-.77; 95% CI: .74-.78] and F1 in the range [.76-.77] (positives) and [.63,.65] (controls). CONCLUSIONS Granular measures of free-living physical activity can be used to successfully train machine learning models that are able to discriminate between T2D and normoglycaemic controls, albeit with limitations due to the intrinsic noise in the datasets. In a broader, clinical perspective, these findings motivate further research into the use of physical activity traces as a means to screen individuals at risk of diabetes and for early detection, in conjunction with routinely used risk scores, provided that appropriate quality control is enforced on the data collection protocol in order to improve the signal-to-noise ratio. CLINICALTRIAL

2021 ◽  
Author(s):  
Adriano Winterton ◽  
Francesco Bettella ◽  
Ann-Marie G de Lange ◽  
Marit Haram ◽  
Nils Eiel Steen ◽  
...  

Oxytocin is a neuromodulator and hormone that is typically associated with social cognition and behavior. In light of its purported effects on social cognition and behavior, research has investigated its potential as a treatment for psychiatric illnesses characterised by social dysfunction, such as schizophrenia and bipolar disorder. While the results of these trials have been mixed, more recent evidence suggests that the oxytocin system is also linked with cardiometabolic conditions for which individuals with severe mental disorders are at a higher risk for developing. To investigate whether the oxytocin system plays a pleiotropic role in the aetiology of severe mental illness and cardiometabolic conditions, we explored oxytocin’s role in the shared genetic liability of schizophrenia, bipolar disorder, type 2 diabetes and several phenotypes linked with cardiovascular disease and type 2 diabetes risk using a polygenic pathway-specific approach. Analysis of a large sample with 488,377 individuals (UK Biobank) revealed statistically significant associations across the range of phenotypes analysed. By comparing these effects to those of polygenic scores calculated from 100 random gene-sets, we also demonstrated the specificity of many of these significant results. Altogether, our results suggest that the shared effect of oxytocin system dysfunction could help explain the co-occurrence of social and cardiometabolic dysfunction in severe mental illnesses.


Diabetes Care ◽  
2018 ◽  
Vol 41 (4) ◽  
pp. 762-769 ◽  
Author(s):  
Céline Vetter ◽  
Hassan S. Dashti ◽  
Jacqueline M. Lane ◽  
Simon G. Anderson ◽  
Eva S. Schernhammer ◽  
...  

Circulation ◽  
2021 ◽  
Vol 143 (Suppl_1) ◽  
Author(s):  
Carolina Ochoa-Rosales ◽  
Niels van der Schaft ◽  
Kim V Braun ◽  
Frederick Ho ◽  
Fanny Petermann ◽  
...  

Background: Coffee intake has been linked to lower type 2 diabetes (T2D) risk. We hypothesized this may be mediated by coffee’s effects on inflammation. Methods: Using participants from the UK Biobank (UKB n=145370) and Rotterdam Study (RS n=7172) cohorts, we studied associations of coffee intake with incident T2D; longitudinally measured insulin resistance (HOMA IR); serum levels of inflammation markers; and the mediating role of inflammation. Statistical regression models were adjusted for sociodemographic, lifestyle and health factors. Results: The median follow up was 7 (UKB) and 9 (RS) years. An increase of one coffee cup/day was associated with 4-6% lower T2D risk (RS HR=0.94 [95% CI 0.90; 0.98]; UKB HR=0.96 [0.94; 0.98]); lower HOMA IR (RS β=-0.017 [-0.024; -0.010]); with lower C reactive protein (CRP) and higher adiponectin (Figure1). Consumers of filtered coffee had the lowest T2D risk (UKB HR=0.88 [0.83; 0.93]). CRP levels mediated 9.6% (UKB) and 3.4% (RS) of the total effect of coffee on T2D (Figure 1). Conclusions: We suggest that coffee’s beneficial effects on lower T2D risk are partially mediated by improvements in systemic inflammation.Figure 1. a CRP and a adiponectin refer to the effect of coffee intake on CRP and adiponectin levels. a CRP RS : β=-0.014 (-0.022; -0.005); UKBB a CRP UKB : β=-0.011 (-0.012; -0.009) and RS a adiponectin : β=0.025 (0.007; 0.042). b CRP and b adiponectin refer to the effect of coffee related levels in CRP and adiponectin on incident T2D, independent of coffee. RS b CRP : HR=1.17 (1.04; 1.31); UKB b CRP : HR=1.45 (1.37; 1.54); and b adiponectin : HR=0.58 (0.32; 0.83). c′ refers to coffee’ effect on T2D going directly or via others mediators. UKB c′ independent of CRP : HR=0.96 (0.94; 0.99); RS c′ independent of CRP : HR=0.94 (0.90; 0.99); and RS c′ independent of CRP+adiponectin : HR=0.90 (0.80; 1.01). Coffee related changes in CRP may partially explain the beneficial link between coffee and T2D, mediating a 3.4% (0.6; 4.8, RS) and 9.6% (5.7; 24.4, UKB). Evidence of mediation was also found for adiponectin.


SLEEP ◽  
2017 ◽  
Vol 40 (suppl_1) ◽  
pp. A377-A377
Author(s):  
C Vetter ◽  
HS Dashti ◽  
JM Lane ◽  
SG Anderson ◽  
ES Schernhammer ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document