Relation Between Strength, Pore Structure and Associated Properties of Slag-Containing Cementitious Materials

1984 ◽  
Vol 42 ◽  
Author(s):  
Della M. Roy ◽  
G. M. Idorn

AbstractSubstantial increases of the strength of cement paste and mortars may be obtained in conventional processing by optimizing the materials components, the rheology and the curing, and thereby improving the microstructures. Cementitious materials with high proportions of granulated blast-furnace slag have been investigated. Higher strengths of ASTM C 109 mortars were obtained with 40 to 65% substitution of portland cement by slag, than with ordinary mix compositions and processing.For one set of mixtures, 28 day strengths ≥ 100 MPa (some as high as 240 MPa) were consistently attained after curing at temperatures ranging from 27 to 250°C. The slag substitutions developed finer pore structures as revealed by intrusion porosimetry measurements, than those with pure portland cement. This is believed to be a major reason for their enhanced durability. At each stage from 3 to 28 days, increase of curing temperatures from 27 to 90°C decreased porosity and increased the strength, reflecting an increased maturity.Implications for practice and suggestions for further work are discussed.

2021 ◽  
Vol 8 ◽  
Author(s):  
Fusheng Niu ◽  
Yukun An ◽  
Jinxia Zhang ◽  
Wen Chen ◽  
Shengtao He

In this study, the influence of steel slag (SS) content on the strength of the cementitious materials was investigated. The quaternary active cementitious material (CaO-SiO2-Al2O3-SO3) was prepared using various proportions of steel slag (SS), granulated blast furnace slag (BFS), and desulfurized gypsum (DG). The mechanism of synergistic excitation hydration of the cementitious materials was examined using various techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FTIR). The strength of the mortar test block was initially increased and decreased later with the increase of the SS content. Mortar test block with 20% steel slag, 65% granulated blast furnace slag, and 15% desulfurized gypsum with 0.35 water-binder ratio showed the highest compressive strength of 57.3 MPa on 28 days. The free calcium oxide (f-CaO) in the SS reacted with water and produced calcium hydroxide (Ca(OH)2) which created an alkaline environment. Under the alkaline environment, the alkali-activated reaction occurred with BFS. In the early stage of hydration reaction, calcium silicate hydrate (C-S-H) gel and fibrous hydration product ettringite (AFt) crystals were formed, which provided early strength to the cementitious materials. As the hydration reaction progressed, the interlocked growth of C-S-H gel and AFt crystals continued and promoted the increase of the strength of the cementitious system.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3448
Author(s):  
Chenhui Jiang ◽  
Aiying Wang ◽  
Xufan Bao ◽  
Zefeng Chen ◽  
Tongyuan Ni ◽  
...  

This paper presents an experimental investigation on geopolymer coatings (GPC) in terms of surface protection of civil structures. The GPC mixtures were prepared with a quadruple precursor simultaneously containing fly ash (FA), ground granulated blast-furnace slag (GBFS), metakaolin (MK), and Portland cement (OPC). Setting time, compressive along with adhesive strength and permeability, were tested and interpreted from a perspective of potential applications. The preferred GPC with favorable setting time (not shorter than 120 min) and desirable compressive strength (not lower than 35 MPa) was selected from 85 mixture formulations. The results indicate that balancing strength and setting behavior is viable with the aid of the multi-componential precursor and the mixture design based on total molar ratios of key oxides or chemical elements. Adhesive strength of the optimized GPC mixtures was ranged from 1.5 to 3.4 MPa. The induced charge passed based on a rapid test of coated concrete specimens with the preferred GPC was 30% lower than that of the uncoated ones. Setting time of GPC was positively correlated with η[Si/(Na+Al)]. An abrupt increase of setting time occurred when the molar ratio was greater than 1.1. Compressive strength of GPC was positively affected by mass contents of ground granulated blast furnace slag, metakaolin and ordinary Portland cement, and was negatively affected by mass content of fly ash, respectively. Sustained seawater immersion impaired the strength of GPC to a negligible extent. Overall, GPC potentially serves a double purpose of satisfying the usage requirements and achieving a cleaner future.


2019 ◽  
Vol 110 ◽  
pp. 01055
Author(s):  
Liliya Kazanskaya ◽  
Nicolay Privalov ◽  
Svetlana Privalova

Nowadays, it is acknowledged that the use of mineral additives based on ground slag is one of ways of resource saving and improvement of technical properties of cement composites. Mineral additives with fineness similar to the Portland cement fineness are often used to replace part of Portland cement. Two kinds of ultra-fine ground granulated blast furnace slag that differ in composition and fineness were studied in the paper. Water-reduction due to effect of super plasticizer in slag-Portland cement compositions with amount of slag up to 70% was studied. The results of reduction of binder quantity per 1 kg of chemical admixture due to significant water-reduction are obtained and analysed. Correlations depending on kind, amount and fineness of slags, as well as depending on mineralogical composition of Portland cement were stated. The ultra-fine mineral additives based on ground slag with high specific surface area can be used for significant reduction of compositional binder.


2010 ◽  
Vol 158 ◽  
pp. 1-11 ◽  
Author(s):  
Zi Qiao Jin ◽  
Xian Jun Lu ◽  
Shu Gang Hu

In order to stimulate the potential cementitious property of granulated blast furnace slag (GBFS), the ground GBFS sample (Wei Fang Iron and Steel Corporation, China) was activated by lime and gypsum under different dosages. The results showed that lime is an effective activator for the slag, and the optimum dosage of lime is about 10% (w/w) of the slag. At the optimum dosage of lime, the 28 days compressive strength of the lime-slag paste is higher than that of 32.5 ordinary Portland cement (OPC). But, the early age strength (3 and 7 days compressive strength) of the lime-slag paste is lower than that of the OPC. Addition of gypsum can effectively improve the early age strength of the lime-slag paste. At the ratio of gypsum:lime:slag of 8.2:9.2:82.6 (w/w), both the early and long-term compressive strengths of the gypsum-lime-slag paste are higher than that of the OPC. According to XRD, TG-DTA and SEM detections of the hydration products of the lime-slag paste, the gypsum-lime-slag paste and the OPC paste, it reveals that the hydration process of the GBFS-based cementitious material is different from the ordinary Portland cement and the presence of ettringite (AFt) contributes to the early age strength of the pastes. The major hydration product of the OPC paste (<7 days) were measured as ettringite (AFt), but the AFt phase was not detected in the hydration product of the lime-slag paste and the major hydration product of the lime-slag paste was determined as amorphous CSH gel. However, AFt was detected in the hydration products of the gypsum-lime-slag paste in the early stages of hydration, and the formation of AFt is favorable for the early strength improvement of the material.


Sign in / Sign up

Export Citation Format

Share Document