scholarly journals Carbon Dioxide Absorption in a Fabricated Wetted-Wall Column Using Varying Concentrations of Aqueous Ammonia

2014 ◽  
Vol 13 (2) ◽  
pp. 9
Author(s):  
H.E.E. Ching ◽  
L.M.P. Co ◽  
S.I.C. Tan ◽  
S.A. Roces ◽  
N.P. Dugos ◽  
...  

Due to the continued increasing levels of CO2 emissions that is contributing to climate change, CO2 mitigation technologies, particularly carbon capture and storage, are being developed to address the goal of abating CO2 levels. Carbon capture technologies can be applied at the pre-combustion, oxy-fuel combustion, and post-combustion stages, the latter being the most widely used due to its flexibility. Among the several CO2 separation processes available for carbon capture, absorption is the most widely used where amine solutions are used as absorbents. This paper highlights the use of a wetted wall column fabricated by Siy and Villanueva (2012) and simulated flue gas to determine the performance of CO2 absorption in terms of the percentage of CO2 absorbed, the steady state time, and the overall gas mass transfer coefficient. The concentrations used were 1, 5, 10, and 15% NH3(aq) at a constant temperature range of 12-17ºC, solvent flow rate of 100 mL/min, and simulated flue gas flow rate of 2 L/min. It was found that increasing the solvent concentration resulted in a proportional increase both in the percentage of CO2 absorbed and the overall gas mass transfer coefficient. The average percentage of CO2 absorbed ranged within 52.25% to 95.29% while the overall mass transfer coefficient ranged from 0.1843 to 0.7746 mmol/m2∙s∙kPa. However, erratic behavior was seen for the time required for the system to reach steady state. Using Design ExpertTM for analysis, the results showed that the effect of varying the concentration had a significant effect on the percentage of CO2 absorbed and the overall gas mass transfer coefficient. The results proved that the greater the aqueous ammonia concentration, the greater the percentage of CO2 absorbed. The range of 5-10% aqueous ammonia is recommended because the percentage of CO2 absorbed peaks at an average of 92% beyond the range of 5-10%.

2019 ◽  
Vol 41 (5) ◽  
pp. 820-820
Author(s):  
Pongayi Ponnusamy Selvi and Rajoo Baskar Pongayi Ponnusamy Selvi and Rajoo Baskar

The acidic gas, Carbon dioxide (CO2) absorption in aqueous ammonia solvent was carried as an example for industrial gaseous treatment. The packed column was provided with a novel structured BX-DX packing material. The overall mass transfer coefficient was calculated from the absorption efficiency of the various runs. Due to the high solubility of CO2, mass transfer was shown to be mainly controlled by gas side transfer rates. The effects of different operating parameters on KGav including CO2 partial pressure, total gas flow rates, volume flow rate of aqueous ammonia solution, aqueous ammonia concentration, and reaction temperature were investigated. For a particular system and operating conditions structured packing provides higher mass transfer coefficient than that of commercial random packing.


2018 ◽  
Vol 8 (11) ◽  
pp. 2041 ◽  
Author(s):  
Pao Chi Chen ◽  
Sheng-Zhong Lin

This study used sodium glycinate as an absorbent to absorb CO2 in the bubble column scrubber under constant pH and temperature environments to obtain the operating range, CO2 loading, and mass transfer coefficient. For efficient experimentation, the Taguchi method is used for the experimental design. The process parameters are the pH, gas flow rate (Qg), liquid temperature (T), and absorbent concentration (CL). The effects of the parameters on the absorption efficiency, absorption rate, overall mass transfer coefficient, gas–liquid molar flow rate ratio, CO2 loading, and absorption factor are to be explored. The optimum operating conditions and the order of parameter importance are obtained using the signal/noise (S/N) ratio analysis, and the optimum operating conditions are further verified. The verification of the optimum values was also carried out. The order of parameter importance is pH > CL > Qg > T. Evidence in the 13CNMR (Carbon 13 Nuclear Magnetic Resonance) spectra shows that the pH value has an effect on the solution composition, which affects both the absorption efficiency and mass transfer coefficient. There are 18 experiments for regeneration, where the operating temperature is 100–120 °C. The heat of regeneration was measured according to the thermodynamic data. The CO2 loading, the overall mass transfer, and the heats of regeneration correlation are also discussed in this work. Finally, an operating policy for the CO2 absorption process was confirmed.


2014 ◽  
Vol 955-959 ◽  
pp. 1927-1934 ◽  
Author(s):  
Pao Chi Chen ◽  
L.C. Lin

A pH-stat stirred-tank scrubber for capturing carbon dioxide using aqueous ammonia was used to explore the effects of process variables on the absorption of carbon dioxide. In order to maintain the pH value of the solution, aqueous ammonia was automatically introduced into the tank through the action of a pH-controller. The process variables were the pH of the solution, gas-flow rate, gas concentration and stirring speed. The absorption rate and mass-transfer coefficient could be determined by means of mass balance at a steady-state. It was found that the liquid-flow rate was 0.50-58.33 ml/min; the removal efficiency was in the range of 30.1-100% and the loading of CO2 was in the range of 0.02425-0.5661 mol-CO2/mol-NH3. The results also showed that the absorption rate was in the range of 5.14x10-5 to 6.27x10-4 mol/s-L, while the mass-transfer coefficient was in the range of 0.015 to 0.14 1/s. The effects of mixing on the absorption rate, mass-transfer coefficient and loading of CO2 were also discussed in this work.


1986 ◽  
Vol 51 (10) ◽  
pp. 2127-2134 ◽  
Author(s):  
František Potůček ◽  
Jiří Stejskal

Absorption of oxygen into water and aqueous solutions of poly(acrylamides) was studied in an absorber with a wetted sphere. The effects of changes in the liquid flow rate and the polymer concentration on the liquid side mass transfer coefficient were examined. The results are expressed by correlations between dimensionless criteria modified for non-Newtonian liquids whose flow curve can be described by the Ostwald-de Waele model.


2014 ◽  
Vol 908 ◽  
pp. 277-281
Author(s):  
Fei Wu ◽  
Jie Wu ◽  
Mei Jin ◽  
Fang Wang ◽  
Ping Lu

Based on acetone-H2O system, the influence of the gas-liquid distribution inducer on the mass transfer coefficient in the rotating packed bed with the stainless steel packing was investigated. Furthermore, the absorption performance was also obtained under the experimental condition of the rotational speed of 630 rpm, the gas flow rate of 2 m3/h and the liquid flow rate of 100 L/h in the rotating packed bed with different types and different installation ways of the distribution inducer. The experimental results showed that the volumetric mass transfer coefficient Kyα per unit contact length of gas-liquid was increased by 8.6% for the forward-curved fixed blade, by 19.8% for the backward-curved rotor blade and by 33.2% with the combination of the straight radial rotor blade and the backward-curved fixed blade, respectively. Furthermore, when the gas flow rate was 2.5 m3/h, Kyα per unit contact length of gas-liquid was increased by 2.9% for the forward-curved fixed blade, by 25.3% for the backward-curved rotor blade, by 42.7% for the combination of the straight radial rotor blade and the backward-curved fixed blade, respectively. The results indicated that the distribution inducer play an important role on the improvement of the mass transfer coefficient in acetone-H2O system.


2008 ◽  
Vol 137 (2) ◽  
pp. 422-427 ◽  
Author(s):  
Rocío Maceiras ◽  
Sebastião S. Alves ◽  
M. Ángeles Cancela ◽  
Estrella Álvarez

2017 ◽  
Vol 114 ◽  
pp. 1665-1670 ◽  
Author(s):  
Xiaomei Wu ◽  
Min He ◽  
Yunsong Yu ◽  
Zhen Qin ◽  
Zaoxiao Zhang

Konversi ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 6
Author(s):  
Erlinda Ningsih ◽  
Abas Sato ◽  
Mochammad Alfan Nafiuddin ◽  
Wisnu Setyo Putranto

Abstract- One of the most widely used processes for CO2 gas removal is Absorption. Carbon dioxide is the result of the fuel combustion process which of the hazardous gases. The aim of this research is to determine the total mass transfer coefficient and analyze the effect of the absorbent flow rate of the absorbent solution with the promoter and the gas flow rate to the total mass transfer coefficient value. The variables consisted of liquid flow rate: 1, 2, 3, 4, 5 liter/min, gas flow rate: 15, 25, 30, 40, 50 liter/min and MSG concentration: 0%, 1%, 3% and 5% by weight. The solution of Pottasium Carbonate as absorbent with MSG promoter is flowed through top column and CO2 gas flowed from bottom packed column. Liquids were analyzed by titration and the gas output was analyzed by GC. From this research, it is found that the flow rate of gas and the liquid flow rate is directly proportional to the value of KGa. The liquid flow rate variable 5 liters / minute, gas flow rate 15 l / min obtained value of KGa 11,1102 at concentration of MSG 5%. Keywords:  Absorption, CO2,  K2CO3, MSG. 


2020 ◽  
Vol 10 (15) ◽  
pp. 5071
Author(s):  
Zuwu Wang ◽  
Guifen Shen

An integrated electromigration membrane absorption method has been proposed for the separation of NO from simulated mixed gas. The experiments were conducted to investigate the effect of discharge voltage, gas flow rate, inlet concentrations, and absorbents on the NO separation efficiency and total mass transfer coefficient in the integrated electromigration membrane reactor. The experimental results demonstrated that the NO separation efficiency and total mass transfer coefficient increased with the increase in the applied discharge voltage of the integrated electromigration membrane reactor. Regardless of discharge or not, the separation efficiency of NO continuously decreased with the increase in the gas flow rate and inlet concentration of NO in the experimental process. The total mass transfer coefficient of NO increased first and then decreased with an increase in the gas flow rate, while it decreased with an increase in NO inlet concentration. Compared with the membrane absorption without discharge voltage under the condition tested, at a discharge voltage of 18kV, the NO separation efficiency and the total mass transfer coefficient increased by 48.7% and 9.7 times, respectively.


Sign in / Sign up

Export Citation Format

Share Document