scholarly journals ALKYLARYLKETONE HOMOLOGOUS SERIES FOR DETERMINATION OF KOVATS RETENTION INDICES WITH RP-HPLC USING ACETONITRILE/WATER SYSTEM

2010 ◽  
Vol 10 (1) ◽  
pp. 58-63 ◽  
Author(s):  
Rinaldi Idroes

Some factors such as the changes of the stationary phase, temperature, pH-value, mobile-phase composition and flow rate play a crucial role in effecting the sensitivity of retention times in high performance liquid chromatography (HPLC) system. Utilizing a retention index system is one of the methods to minimize those effects. Besides the mentioned factors, dead-time influences on determining the retention index as well. In comparison with Gas Chromatography (GC), the retention Index determination method in HPLC is still widely discussed, due to the difficulty of utilizing n-alkane as standard. In addition, the solutes in HPLC interact with the mobile-phase, thus the retention behavior also depend on the mobile-phase. Actually, It is difficult to use n-alkanes in HPLC as standards in case of some considerable problems, due to they are very non polar but also large retention times which lack of chromophores. Therefore, using n-alkane in routine analysis could be inconvenient. In comparison with n-alkanes, the alkylarylketones homologous series are stable compounds, commercially available and easily detected by a UV detector. This paper introduces Determination of Kovats Retention Index in the HPLC using Alkylarylketone homologous series and then is connected with n-alkane as a frame of reference. Steroids were used as test substance for calculating Kovats retention index values in acetonitrile/water system.   Keywords: Kovats Retention Index, RP- HPLC, n-alkane, alkylarylketone

1976 ◽  
Vol 118 (1) ◽  
pp. 13-22 ◽  
Author(s):  
X. Guardino ◽  
J. Albaigés ◽  
G. Firpo ◽  
R. Rodríguez-Vinãls ◽  
M. Gassiot

2019 ◽  
Vol 9 (o3) ◽  
Author(s):  
Imad Tarek Hanoon ◽  
Abed Mohammed Daheir AL-Joubory 2 ◽  
Marwa Mohamed Saied 3

A simple , specific, accurate and precise RP-HPLC method was developed for determination of Irbesartan (IRB) in pharmaceutical dosage forms in tablets products and sachet using symmetry (L 1 ) column at 30°C . The signal was detected at 225 nm. A mobile phase dissolve 0.5 g of buffer potassium phosphate in 100 ml distilled water and adjust pH 2.7 , methanol and acetonitrile at ratio (40 :30 :30 ) . and flow rate 1.2ml/min -1 at pH=7.2 a mobile phase The percent recovery was detected 101 % and the linearity of concentration was 10-50 µg.ml -1 and supported this method by using (FT.I.R.) spectrum method for organic spectrophotometer to prove the chemical structure of this drug and some physical properties . we are obtained the result is identical of other literature . The proposed method was applied successfully for determination of the IRB in tablets products.


Separations ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 5
Author(s):  
Mohd Afzal ◽  
Mohd. Muddassir ◽  
Abdullah Alarifi ◽  
Mohammed Tahir Ansari

A highly specific, accurate, and simple RP-HPLC technique was developed for the real-time quantification of domperidone (DOMP) and lansoprazole (LANS) in commercial formulations. Chromatographic studies were performed using a Luna C8(2), 5 μm, 100Å, column (250 × 4.6 mm, Phenomenex) with a mobile phase composed of acetonitrile/2 mM ammonium acetate (51:49 v/v), pH 6.7. The flow rate was 1 mL·min−1 with UV detection at 289 nm. Linearity was observed within the range of 4–36 µg·mL−1 for domperidone and 2–18 µg·mL−1 for lansoprazole. Method optimization was achieved using Box-Behnken design software, in which three key variables were examined, namely, the flow rate (A), the composition of the mobile phase (B), and the pH (C). The retention time (Y1 and Y3) and the peak area (Y2 and Y4) were taken as the response parameters. We observed that slight alterations in the mobile phase and the flow rate influenced the outcome, whereas the pH exerted no effect. Method validation featured various ICH parameters including linearity, limit of detection (LOD), accuracy, precision, ruggedness, robustness, stability, and system suitability. This method is potentially useful for the analysis of commercial formulations and laboratory preparations.


2006 ◽  
Vol 3 (1) ◽  
pp. 60-64 ◽  
Author(s):  
P. Venkata Reddy ◽  
B. Sudha Rani ◽  
G. Srinu Babu ◽  
J. V. L. N. Seshagiri Rao

A reverse phase HPLC method is developed for the determination of Raloxifene in pharmaceutical dosage forms. Chromatography was carried out on an inertsil C18 column using a mixture of acetonitrile and phosphate buffer (30:70 v/v) as the mobile phase at a flow rate of 1 mL/min. Detection was carried out at 290 nm .The retention time of the drug was 10.609 min. The method produced linear responses in the concentration range of 0.5-200 µg/mL of Raloxifene. The method was found to be applicable for determination of the drug in tablets.


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (12) ◽  
pp. 32-36
Author(s):  
T. Vishalakhi ◽  
◽  
S. K Kumar ◽  
K Sujana ◽  
P Rani

A simple validated RP HPLC method for the estimation of rizatriptan benzoate in pharmaceutical dosage form and bulk was developed for routine analysis. This method was developed by selecting Agilent TC C18 (250 x 4.6 mm, 5 μ) column as stationary phase and acrylonibrile:water (45:55), pH adjusted to 3, as mobile phase. Flow rate of mobile phase was maintained at 4: 1 mL/min at ambient temperature throughout the experiment. Quantification was achieved with ultraviolet (DAD) detection at 220 nm. The retention time obtained for rizatriptan was 2.8 min. The detector response was linear in the concentration range of 2-25μg/mL. This method was validated and shown to be specific, sensitive, precise, linear, accurate, rugged and robust. Hence, this method can be applied for routine quality control of rizatriptan benzoate in dosage forms as well as in bulk drug.


2021 ◽  
Vol 66 (3) ◽  
pp. 172-176
Author(s):  
Lyubov Borisovna Kalikova ◽  
E. R. Boyko

Adenine nucleotides (ATP, ADP and AMP) play a central role in the regulation of metabolism and energy: they provide the energy balance of the cell, determine its redox state, act as allosteric effectors of a number of enzymes, modulate signaling and transcription factors and activate oxidation or biosynthesis substrates. A large number of methods have been developed to determine the level of ATP, ADP and AMP, but the most universal and effective method for the separation and analysis of complex mixtures is the reversed-phase high-performance liquid chromatography method (RP-HPLC). The aim of this study is to determine the optimal conditions for the qualitative separation and quantitative determination of standard solutions of ATP (1 mmol/l), ADP (0,5 mmol/l) and AMP (0,1 mmol/l) by RP-HPLC. The degree of separation of adenine nucleotides was estimated by the time of peak output in the chromatogram. To achieve the goal, the following tasks were set: assess the effect of the temperature of the analysis on the separation and change of the release time of the analytes in the chromatogram; determine the most optimal composition of the mobile phase for the separation of ATP, ADP and AMP in the chromatogram (the content of the organic solvent in the solution); to identify the effect of pH of the mobile phase on the separation of standard solutions of adenine nucleotides; set the optimal molarity of the mobile phase for the separation of ATP, ADP and AMP in the chromatogram. It was found that the temperature of the analysis does not affect the quality of peak separation, while the composition and pH of the mobile phase have a significant effect on the complete and clear separation of the studied nucleotides in the chromatogram. It was determined that the analysis temperature of 37°C and the mobile phase of 0.05 M KH2PO4 (pH 6.0) are optimal for separating the peaks of adenine nucleotides.


Author(s):  
Muhammad Fawad Rasool ◽  
Umbreen Fatima Qureshi ◽  
Nazar Muhammad Ranjha ◽  
Imran Imran ◽  
Mouqadus Un Nisa ◽  
...  

AbstractTh accurate rapid, simple and selective reversed phase high performance liquid chromatography (RP-HPLC) has been established and validated for the determination of captopril (CAP). Chromatographic separation was accomplished using prepacked ODSI C18 column (250 mm × 4.6 mm with 5 μm particle size) in isocratic mode, with mobile phase consisting of water: acetonitrile (60:40 v/v), pH adjusted to 2.5 by using 85% orthophosphoric acid at a flow rate of 1 mL/min and UV detection was performed at 203 nm. RP-HPLC method used for the analysis of CAP in mobile phase and rabbit plasma was established and validated as per ICH-guidelines. It was carried out on a well-defined chromatographic peak of CAP was established with a retention time of 4.9 min and tailing factor of 1.871. The liquid–liquid extraction method was used for extraction of CAP from the plasma. Excellent linearity (R2 = 0.999) was shown over range 3.125–100 µg/mL with mean percentage recoveries ranges from 97 to 100.6%. Parameters of precision and accuracy of the developed method meet the established criteria. Intra and inter-day precision (% relative standard deviation) study was also performed which was less than 2% which indicate good reproducibility of the method. The limit of detection (LOD) and quantification for the CAP in plasma were 3.10 and 9.13 ng/mL respectively. The method was suitably validated and successfully applied to the determination of CAP in rabbit plasma samples.


2005 ◽  
Vol 11 (2) ◽  
pp. 55-58 ◽  
Author(s):  
Dusan Mijin ◽  
Dusan Antonovic

Linear and reciprocial Kovats retention index-boiling point relationships known from the literature were used to study the Kovats retention index-boiling point dependence of 2-phenyl-2-alkylacetonitriles on stationary phases of different polarity (OV-17, OV-210 and OV-225). The standard chemical potential of the partitioning of one methylene group of an n-alkane for the stationary phase was calculated and compared with available literature data.


Sign in / Sign up

Export Citation Format

Share Document