Structural and Optical Properties of Commercial Microparticle Zinc Oxide

2020 ◽  
Vol 990 ◽  
pp. 302-305
Author(s):  
Razif Nordin ◽  
Nadia Latiff ◽  
Rizana Yusof ◽  
Wan Izhan Nawawi ◽  
M.Z. Salihin ◽  
...  

Commercial grade ZnO were sieved into particle size of 38 to 90 μm at room temperature. X-ray diffraction (XRD) pattern confirms the hexagonal wurzite structure of ZnO microparticles. Irregular shapes of ZnO microparticles were observed by scanning electron microscope (SEM). Fourier transform infrared spectra (FTIR) confirmed the presence of Zn-O band. In addition, Uv-visible spectra (UV-Vis) were empolyed to estimate the band gap energy of ZnO microparticles.

2021 ◽  
Vol 21 (2) ◽  
pp. 279
Author(s):  
Nur Munirah Safiay ◽  
Rozina Abdul Rani ◽  
Najwa Ezira Ahmed Azhar ◽  
Zuraida Khusaimi ◽  
Fazlena Hamzah ◽  
...  

In this research, TiO2 thin films were prepared using a simple sol-gel spin coating process. The films were characterized using Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive Ray (EDX), X-ray diffraction (XRD) and Ultraviolet–visible Spectrophotometer in order to investigate the influence of different annealing temperatures to the structural and optical properties of TiO2. The surface morphology images from FE-SEM display a uniform layer of nanoparticles with a sample of 500 °C possess the most uniform and the visible spherical grain of TiO2 nanoparticles. EDX spectra confirm the presence of Ti and O elements in the samples. The structural properties from the XRD pattern demonstrate that the films are crystalline at a temperature of 500 and 600 °C and the peak (101) intensity was increased as the annealing temperature increased. They exist in the anatase phase at the preferred plane orientation of (101). The calculated crystallite size for 500 and 600 °C samples is 19.22 and 28.37 nm, respectively. The films also possessed excellent absorption in the ultraviolet (UV) region with optical band gap energy ranging from 3.32 to 3.43 eV. These results can be fundamental for the fabrication of a UV sensing device.


2020 ◽  
pp. 1307-1312
Author(s):  
Wadaa S. Hussein ◽  
Ala' Fadhil Ahmed ◽  
Kadhim A. Aadim

The current study was achieved on the effects of laser energy and annealing temperature on x-ray structural and optical properties, such as the UV-Visible spectra of cadmium sulfide (CdS). The films were prepared using pules laser deposition technique (PLD) under vacuum at a pressure of 2.5×10-2 mbar with different laser energies (500-800 mJ) and annealing at a temperature of 473K. X-ray diffraction patterns and intensity curves for the CdS showed that the formation of CdS multi-crystallization films at all laser energies. The optical properties of the films were studied and the variables affecting them were investigated in relation to laser energy and changes in temperature.


2020 ◽  
Vol 56 (2) ◽  
pp. 269-277
Author(s):  
V.E. Sokol’skii ◽  
D.V. Pruttskov ◽  
O.M. Yakovenko ◽  
V.P. Kazimirov ◽  
O.S. Roik ◽  
...  

Anorthite and gehlenite crystalline structure and short-range order of anorthite melt have been studied by X-ray diffraction in the temperature range from room temperature up to ~ 1923 K. The corresponding anorthite and gehlenite phases were identified as well as amorphous component for anorthite samples having identical shape to XRD pattern of the anorthite melt. The structure factor and the radial distribution function of atoms of the anorthite melt were calculated from the X-ray high-temperature experimental data. The partial structural parameters of the short-range order of the melt were reconstructed using Reverse Monte Carlo simulations.


2020 ◽  
Vol 835 ◽  
pp. 317-323
Author(s):  
D.A. Rayan ◽  
E.A. Abdel-Mawla ◽  
S.K. Mohamed ◽  
A.A. Mohamed ◽  
Mohamed M. Rashad

Nanocrystalline bismuth ferrite BFO; BiFeO3 and manganese sillenite, BMO; Bi12MnO20 (BMO) powders have been successfully elaborated using a facile co-precipitation approach. The formed materials were examined using X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FE-SEM). Furthermore, the change in the optical properties was performed based on Fourier transform infrared spectroscopy (FT-IR) and UV-visible spectrophotometer. Typical, pure BiFeO3 and Bi12MnO20 phases were detected for the precursors precipitated at pH 10 based on ammonium hydroxide as a base then annealed at 500°C for 2h. Eventually, the optical band gap energy of BFO and BMO using Kubelka–Munk function based on Tauc’s plot was found to be 2.12 and 2.79 eV, respectively.


2015 ◽  
Vol 773-774 ◽  
pp. 1096-1100 ◽  
Author(s):  
Muhammad Mubashir ◽  
Yin Fong Yeong ◽  
Lau Kok Keong ◽  
Azmi bin Mohd Shariff

In the present work, DDR3 zeolite crystals were synthesized using two different methods. The silica sources used to synthesize DDR3 crystals were tetramethoxysilane (TMOS) and Ludox-40. The resultant samples were characterized using X-ray Diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM). The XRD results showed that the peaks representing DDR3 structure were not obtained for the sample synthesized in 5 days at room temperature with ultrasonic pre-treatment of 3h using Ludox-40 as silica source. On the other hand, the XRD pattern obtained for the sample synthesized in 25 days at 160 o C using TMOS as a silica source were similar with the XRD peaks reported in the literature. From these results, it can be concluded that the synthesis conditions of 25 days at 160 o C using TMOS as silica source were the favorable conditions in obtaining DDR3 crystal structure.


2008 ◽  
Vol 8 (12) ◽  
pp. 6389-6397 ◽  
Author(s):  
D. Velasco-Arias ◽  
D. Díaz ◽  
P. Santiago-Jacinto ◽  
G. Rodríguez-Gattorno ◽  
A. Vázquez-Olmos ◽  
...  

A novel and easy synthesis pathway of small SnO2 nanoparticles is reported. The method consists of the spontaneous hydrolysis of SnCl4·5H2O in dimethyl sulfoxide (DMSO), containing 3% water, at room temperature. The structure of the SnO2 nanocrystals corresponds to that of the cassiterite phase, as shown by powder X-ray diffraction and HR-TEM. The UV-visible electronic absorption and emission spectra of the SnO2 colloids are discussed. The reactions of NO(g) and SO2(g) with ZnO (wurtzite phase) and SnO2 nanocolloids are studied. The interaction of NO with ZnO nanoparticles generates the dissolution of the particles and it is quite probable that NO−13, NO−12, N2O and N2 are formed; while its contact with SO2 probably yields SO−24, SO−23 and also the dissolution of the particles is observed. When these gases are reacted with SnO2, then NO−13, NO−12, SO−23 and SO−24, were respectively obtained.


2010 ◽  
Vol 663-665 ◽  
pp. 1325-1328 ◽  
Author(s):  
De Hui Sun ◽  
De Xin Sun ◽  
Yu Hao

The superparamagnetic NiFe2O4 nanoparticles were synthesized using a hydrothermal technology through P123 sphere micelles as ‘nanoreactor’ in this work. Their morphologies, structures, surface properties and magnetism were characterized by FE-SEM, XRD, FTIR, and VSM, respectively. The nickel ferrite samples are nearly spherical and homogeneous nanoparticles with average size range of about 50-120 nm. They possess superparamagnetism at room temperature and higher saturation magnetization. X-ray diffraction (XRD) pattern confirms that the samples belong to the cubic crystal system with an inverse-spinel structure. Fourier transform infrared (FTIR) absorption spectrum indicates that the NiFe2O4 nanoparticles are stabilized by the P123 adsorbed on the surface of nanoparticles.


2005 ◽  
Vol 865 ◽  
Author(s):  
Hiroki Ishizaki ◽  
Keiichiro Yamada ◽  
Ryouta Arai ◽  
Yasuyuki Kuromiya ◽  
Yukari Masatsugu ◽  
...  

AbstractAgGa5Se8 and Ag(In1-xGax)Se2 thin films with different Ag/Ga atomic ratios have been deposited on the corning 1737 glass substrates by molecular beam epitaxy (MBE) system. This crystallographic property of AgGa5Se8 thin films has been investigated by x-ray diffraction and rietveld analysis. These films had the tetragonal structure with the space group of P-42m, regardless of Ag/Ga atomic ratio. The lattice parameters and the optical band gap energy decreased with an increase in the Ag/Ga atomic ratio. Thus, the structural and optical properties of these AgGa5Se8 thin films were controlled by the Ag/Ga atomic ratio.


2016 ◽  
Vol 81 (11) ◽  
pp. 1251-1262 ◽  
Author(s):  
Oluwafunmilayo Adekunle ◽  
Ray Butcher ◽  
Oladapo Bakare ◽  
Olusegun Odunola

[Cu(phen)2(CH3COO)](ClO4).2H2O (1) and [Cu(bipy)2(CH3COO)]-(ClO4).H2O (2) {phen = 1,10-phenanthroline, bipy = 2,2?-bipyridine}were synthesized and characterized. The complexes were characterized by employying elemental analyses, infrared and UV-Visible spectroscopy, room temperature magnetic measurements and the crystal structures elucidated using X-ray diffraction experiment. The redox properties of the complexes were also investigated. Both structures have a square pyramidal CuN4O chromophore which exhibit significant distortions due to long Cu-O [2.217(3) ? for (1) and 2.179 (1) for (2)] and Cu-N [2.631(2) ? for (1) and 2.714(1) ? for (2)] bonds. This distortion if further shown by the O-Cu-N bond angles [147.71(8) o for (1) and 153.40(5) o for (2)]. The elemental analyses further support the structural details unveiled by the single crystal X-ray diffraction analysis. The infrared spectra shows the acetate vibrational frequencies at 1587 cm-1,1428 cm-1, 1314 cm-1 for (1) and 1571 cm-1, 1441 cm-1, 1319c m-1 for (2) and the perchlo-rate bands at 1059 cm-1, 720 cm-1 (1) and 1080 cm-1,768 cm-1 (2). The broad d-d bands for the copper ion at 14,514 cm-1(1) and 14,535 cm-1(2) support the adoption of square pyramid geometries. The magnetic moments for the two complexes are 1.83 B.M for (1) and 1.72 B.M for (2). The peak to peak values of the two complexes show that the electrode reactions are quasi-reversibile with ?Ep = 0.023V (1) and 0.025V for (2). In both structures, there are ?-? intermolecular interactions in addition to hydrogen bonding between the units.


2021 ◽  
Vol 10 (3) ◽  
pp. 09-15
Author(s):  
Priyadharshini Muthukumaravel ◽  
Rajesh Pattulingam ◽  
Syed Illiyas Syed Maqbool ◽  
Hariharan Venkatesan ◽  
Ezhil Inban Manimaran

The present work focuses the synthesis of Manganese(Mn) doped Fe2O3 nanoparticles via an environmental friendly method which find their suitability for biosensors applications using the extraction of Nyctanthes arbor tristis seed for the first time. The synthesized Mn (~2, 3 & 5 wt. %) doped Fe2O3 were characterized by Powder X-ray diffraction (XRD), Field emission Scanning electron microscopy (FE-SEM), Cyclic voltammeter, Infrared and UV visible spectroscopic studies. The powder X-ray diffraction analysis exposed the phase formation and α - Fe2O3 nanoparticles in the case of annealed sample. Also, interesting secondary phase formation observed in the case of Mn 5wt. % doped samples. The optical properties of Mn (~2, 3 & 5 wt. %) doped Fe2O3 samples was determined by utilizing UV – Visible spectroscopic technique and the corresponding band gap energy was found to be 5.83 eV. The chemical bonds as well as functional groups in the compound were confirmed by the analysis of FT-IR spectrum. The morphology of the prepared samples were observed at micro level using FE-SEM analysis.Cyclic voltammeter was used to find the suitability of the prepared samples for proposed bio sensor applications.  


Sign in / Sign up

Export Citation Format

Share Document