scholarly journals Kalman Filter to Improve Performance of PID Control Systems on DC Motors

Author(s):  
Seta Yuliawan ◽  
Oyas Wahyunggoro ◽  
Nurman Setiawan

A proportional–integral–derivative (PID) controller is a type of control system that is most widely applied in industrial world. Various tuning models have been developed to obtain optimal performance in PID control. However, the methods are designed under ideal circumstances. This means that the control system which has been built will not work optimally when noise exists. Noise can come from electrical vibrations, inference of electronic components, or other noise sources. Thus, it is necessary to design PID control system that can work optimally without being disturbed by noise. In this research, Kalman filter was used to improve the performance of PID controllers. The application of Kalman filter was used to reduce the noise of the input signal so that it could generate output signal which is in accordance with the expected output. Simulation result showed that the PID performance with Kalman filter was more optimal than the ordinary one to minimize the existing noise. The resulting speed of DC motor with Kalman filter had a lower overshoot than PID control without Kalman filter. This method resulted lower integral of absolute error (IAE) than ordinary PID controls. The IAE value for the PID controller with the Kalman filter was 25.4, the PID controller with the observer was 31.0, while the IAE value in the ordinary controller was only 60.9.

2014 ◽  
Vol 568-570 ◽  
pp. 1026-1030
Author(s):  
Xue Jin Bai ◽  
Yong Ming Qiao

Fast-steering mirror system demands higher accuracy and fast responding speed to track targets, but the conventional PID controllers cannot meet the demands. Instead, the fuzzy PID control can greatly improve the capturing and tracking capacities to high-speed dynamic targets. So we apply the fuzzy-PID controller in the positioning loop of the stabilized system, not only improving the transient process of the control system and decreasing the overshoot, but also enhancing the accuracy of tracking stabilization and response. At the end, simulations were performed to test the effectiveness of this method through the MATLAB platform.


Author(s):  
Salman Jasim Hammoodi ◽  
Kareem Sayegh Flayyih ◽  
Ahmed Refaat Hamad

<span>In this paper, we first write a description of the operation of DC motors taking into account which parameters the speed depends on thereof. The PID (Proportional-Integral-Derivative) controllers are then briefly described, and then applied to the motor speed control already described , that is, as an electronic controller (PID), which is often referred to as a DC motor. The closed loop speed control of a Brush DC motor is developed applying the well-known PID control algorithm. The objective of this work is to designed and simulate a new control system to keep the speed of the DC motor constant before variations of the load (disturbances), automatically depending to the PID controller. The system was designed and implementation by using MATLAB/SIMULINK and  DC motor.</span>


Author(s):  
Shubhankar Goje

Abstract: Drones are not inherently stable, necessitating the use of a flight controller. If the UAV is properly tuned, the drone will fly steadily; otherwise, it won’t. Hence, we have used a PID (proportional, integral, differential) controller for a stable flight. A well-functioning PID controller should enable amazing climbs and long-range flights. But, when used singly, PID controllers can provide poor performance, resulting in a long settling time, overshoot, and oscillation. Here, we propose a new approach to maneuver UAVs using a PID control system and overcome the shortcomings of using PID controllers in UAVs. This disadvantage is resolved using the Machine Learning polynomial regression model. The gain factors in a PID control system, which is otherwise ideally constant, should be changed in order to reduce the minor instabilities for a smooth flight. Our method has been elaborated and illustrated with suitable diagrams in the following work. When simulated in Gazebo on a Robot Operating System (ROS), our technique is proven to be successful. Keywords: Control Systems, PID, UAV, Drones, Polynomial Regression, Gain Factor, Prediction Algorithm.


Author(s):  
Andrean George W

Abstract - Control and monitoring of the rotational speed of a wheel (DC motor) in a process system is very important role in the implementation of the industry. PWM control and monitoring for wheel rotational speed on a pair of DC motors uses computer interface devices where in the industry this is needed to facilitate operators in controlling and monitoring motor speed. In order to obtain the best controller, tuning the Integral Derifative (PID) controller parameter is done. In this tuning we can know the value of proportional gain (Kp), integral time (Ti) and derivative time (Td). The PID controller will give action to the DC motor control based on the error obtained, the desired DC motor rotation value is called the set point. LabVIEW software is used as a PE monitor, motor speed control. Keyword : LabView, Motor DC, Arduino, LabView, PID.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Thomas George ◽  
V. Ganesan

AbstractThe processes which contain at least one pole at the origin are known as integrating systems. The process output varies continuously with time at certain speed when they are disturbed from the equilibrium operating point by any environment disturbance/change in input conditions and thus they are considered as non-self-regulating. In most occasions this phenomenon is very disadvantageous and dangerous. Therefore it is always a challenging task to efficient control such kind of processes. Depending upon the number of poles present at the origin and also on the location of other poles in transfer function different types of integrating systems exist. Stable first order plus time delay systems with an integrator (FOPTDI), unstable first order plus time delay systems with an integrator (UFOPTDI), pure integrating plus time delay (PIPTD) systems and double integrating plus time delay (DIPTD) systems are the classifications of integrating systems. By using a well-controlled positioning stage the advances in micro and nano metrology are inevitable in order satisfy the need to maintain the product quality of miniaturized components. As proportional-integral-derivative (PID) controllers are very simple to tune, easy to understand and robust in control they are widely implemented in many of the chemical process industries. In industries this PID control is the most common control algorithm used and also this has been universally accepted in industrial control. In a wide range of operating conditions the popularity of PID controllers can be attributed partly to their robust performance and partly to their functional simplicity which allows engineers to operate them in a simple, straight forward manner. One of the accepted control algorithms by the process industries is the PID control. However, in order to accomplish high precision positioning performance and to build a robust controller tuning of the key parameters in a PID controller is most inevitable. Therefore, for PID controllers many tuning methods are proposed. the main factors that lead to lifetime reduction in gain loss of PID parameters are described in This paper and also the main methods used for gain tuning based on optimization approach analysis is reviewed. The advantages and disadvantages of each one are outlined and some future directions for research are analyzed.


Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 31
Author(s):  
Dushko Stavrov ◽  
Gorjan Nadzinski ◽  
Stojche Deskovski ◽  
Mile Stankovski

In this paper, we discuss an improved version of the conventional PID (Proportional–Integral–Derivative) controller, the Dynamically Updated PID (DUPID) controller. The DUPID is a control solution which preserves the advantages of the PID controller and tends to improve them by introducing a quadratic error model in the PID control structure. The quadratic error model is constructed over a window of past error points. The objective is to use the model to give the conventional PID controller the awareness needed to battle the effects caused by the variation of the parameters. The quality of the predictions that the model is able to deliver depends on the appropriate selection of data used for its construction. In this regard, the paper discusses two algorithms, named 1D (one dimensional) and 2D (two dimensional) DUPID. Appropriate to their names, the former selects data based on one coordinate, whereas the latter selects the data based on two coordinates. Both these versions of the DUPID controller are compared to the conventional PID controller with respect to their capabilities of controlling a Continuous Stirred Tank Reactor (CSTR) system with varying parameters in three different scenarios. As a quantifying measure of the control performance, the integral of absolute error (IAE) metric is used. The results from the performed simulations indicated that the two versions of the DUPID controller improved the control performance of the conventional PID controller in all scenarios.


2014 ◽  
Vol 945-949 ◽  
pp. 2568-2572
Author(s):  
Si Yuan Wang ◽  
Guang Sheng Ren ◽  
Pan Nie

The test rig for hydro-pneumatic converter used in straddle type monorail vehicles was researched, and its electro-pneumatic proportional control system was set up and simulated based on AMESim/Simulink. Compared fuzzy-PID (Proportion Integral Derivative) controller with PID controller through fuzzy logic tool box in Simulink, the results indicate that, this electro-pneumatic proportional control system can meet design requirements better, and fuzzy-PID controller has higher accuracy and stability than PID controller.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hasan Saribas ◽  
Sinem Kahvecioglu

Purpose This study aims to compare the performance of the conventional and fractional order proportional-integral-derivative (PID and FOPID) controllers tuned with a particle swarm optimization (PSO) and genetic algorithm (GA) for quadrotor control. Design/methodology/approach In this study, the gains of the controllers were tuned using PSO and GA, which are included in the heuristic optimization methods. The tuning processes of the controller’s gains were formulated as optimization problems. While generating the objective functions (cost functions), four different decision criteria were considered separately: integrated summation error (ISE), integrated absolute error, integrated time absolute error and integrated time summation error (ITSE). Findings According to the simulation results and comparison tables that were created, FOPID controllers tuned with PSO performed better performances than PID controllers. In addition, the ITSE criterion returned better results in control of all axes except for altitude control when compared to the other cost functions. In the control of altitude with the PID controller, the ISE criterion showed better performance. Originality/value While a conventional PID controller has three parameters (Kp, Ki, Kd) that need to be tuned, FOPID controllers have two additional parameters (µ). The inclusion of these two extra parameters means more flexibility in the controller design but much more complexity for parameter tuning. This study reveals the potential and effectiveness of PSO and GA in tuning the controller despite the increased number of parameters and complexity.


2018 ◽  
Vol 874 ◽  
pp. 96-102
Author(s):  
Aulia Siti Aisjah ◽  
Agoes Ahmad Masroeri ◽  
Nathanael Leon Gozali ◽  
Ridho Akbar ◽  
Devina Permata Sari ◽  
...  

SIGMA-class warship one of warship type is designed up to sea state 6. The ship was redesigned in enlarged dimensions, and called SIGMA extended class warships. A control system can give a performance of response in accordance to the set point when the value of controlled variable can be transmitted to the controller accurately. The characteristic of sensor is not usually able to tranmit a proper value, due to the noise on the sensor and also the environment disturbances. This paper describe a strategy of Kalman filter to estimate variables controlled when the presence noise on the compass or gyrocompas. The result of Kalman filter implementations give the magnitude of the integral absolute error of yaw and sway less than 5%, when there are noise on the measurement and the disturbances.


2011 ◽  
Vol 328-330 ◽  
pp. 1908-1911
Author(s):  
Wei Liu ◽  
Jian Jun Cai ◽  
Xi Pin Fan

To deal with the defects of the steepest descent in slowly converging and easily immerging in partialm in imum,this paper proposes a new type of PID control system based on the BP neural network, which is a combination of the neural network and the PID strategy. It has the merits of both neural network and PID controller. Moreover, Fletcher-Reeves conjugate gradient in controller can make the training of network faster and can eliminate the disadvantages of steepest descent in BP algorithm. The parameters of the neural network PID controller are modified on line by the improved conjugate gradient. The programming steps under MATLAB are finally described. Simulation result shows that the controller is effective.


Sign in / Sign up

Export Citation Format

Share Document