scholarly journals Isolation of Cellulolytic Bacterium Staphylococcus sp. JC20 from the Intestine of Octopus (Octopus sp.) for Fish Probiotic Candidate

2019 ◽  
Vol 21 (2) ◽  
pp. 93 ◽  
Author(s):  
Indah Istiqomah ◽  
Imelda Novita Atitus ◽  
Ahmad Fauzi Rohman ◽  
Alim Isnansetyo

Aim of this study was to isolate, characterize, and identify cellulolytic bacteria from the digestive tract of marine vertebrates and invertebrates as a candidate of fish probiotics. The bacteria were isolated from the digestive tract and grown on a cellulose agar plate. The bacteria were screened based on the cellulolytic activity, acid resistance, antagonist activity against fish pathogens, antibiotics sensitivity, ability to live in fish digestive tract and non-pathogenic test. Selected bacterium was identified molecularly, based on the 16S rDNA gene sequences, and phenotipically. A total of 14 bacteria demonstrated celulolitic index of 1.1-1.8. The bacteria with cellulolytic index of > 1.6 were screened by the selection criteria, resulted a selected strain, JC20 isolate which was isolated from the digestive tract of octopus (Octopus sp.). The selected bacterium was sensitive to antibiotics, resists to acidic environment, able to live in the fish digestive tract, and non-pathogen. Thus, the bacterium was potential for further characterization as fish probiotics candidate. Molecular and phenotypic identification revealed that JC20 isolate was Staphylococcus sp.

2019 ◽  
Vol 366 (12) ◽  
Author(s):  
Shunsuke Ichikawa ◽  
Satoru Ogawa ◽  
Ayami Nishida ◽  
Yuzuki Kobayashi ◽  
Toshihito Kurosawa ◽  
...  

ABSTRACTMembrane vesicles released from bacteria contribute to cell–cell communication by carrying various cargos such as proteins, nucleic acids and signaling molecules. Cellulolytic bacteria have been isolated from many environments, yet the function of membrane vesicles for cellulolytic ability has been rarely described. Here, we show that a Gram-positive cellulolytic bacterium Clostridium thermocellum released membrane vesicles, each approximately 50–300 nm in diameter, into the broth. The observations with immunoelectron microscopy also revealed that cellulosomes, which are carbohydrate-active enzyme complexes that give C. thermocellum high cellulolytic activity, localized on the surface of the membrane vesicles. The membrane vesicles collected by ultracentrifugation maintained the cellulolytic activity. Supplementation with the biosurfactant surfactin or sonication treatment disrupted the membrane vesicles in the exoproteome of C. thermocellum and significantly decreased the degradation activity of the exoproteome for microcrystalline cellulose. However, these did not affect the degradation activity for soluble carboxymethyl cellulose. These results suggest a novel function of membrane vesicles: C. thermocellum releases cellulolytic enzymes on the surface of membrane vesicles to enhance the cellulolytic activity of C. thermocellum for crystalline cellulose.


2021 ◽  
Vol 22 (8) ◽  
Author(s):  
Parima Boontanom ◽  
Aiya Chantarasiri

Abstract. Boontanom P, Chantarasiri A. 2021. Diversity and cellulolytic activity of culturable bacteria isolated from the gut of higher termites (Odontotermes sp.) in eastern Thailand. Biodiversitas 22: 3349-3357. Cellulolytic bacteria are vital symbionts associated with the gut of all higher termites. Odontotermes termites are a higher termite widely found in Thailand. However, information concerning the diversity of cellulolytic bacteria in this termite gut remains inadequate. The aim of this study is to isolate and identify the culturable cellulolytic bacteria from the Odontotermes gut collected from eastern Thailand. The crude cellulases produced from the most active cellulolytic bacterium were further characterized. Thirty-two cellulolytic bacteria were isolated and subsequently classified by PCR-RFLP of the 16S rRNA gene. A total of 10 different RFLP patterns were obtained belonging to five bacterial genera, namely Acinetobacter, Bacillus, Citrobacter, Paenibacillus, and Serratia. The B. cereus strain TWV503 was considered to be the most active cellulolytic bacterium based on the CMC agar method. B. cereus strain TWV503 showed CMCase activity at 2.190 ± 0.063 U/mL of CMCase and 0.276 ± 0.031 U/mL of FPase. The optimum temperature and pH for CMCase activity were 50°C and the neutral pH ranging from 7.0 to 8.0, respectively. CMCase activity remained stable at up to 70°C and neutral pH ranging from 7.0 to 8.0 for 24 hours of incubation. This study revealed novel information related to cellulolytic bacteria isolated from the gut of Odontotermes termites collected from Thailand.


1981 ◽  
Vol 27 (12) ◽  
pp. 1260-1266 ◽  
Author(s):  
B. H. Kim ◽  
J. W. T. Wimpenny

Growth factor requirements, growth kinetics, and the ability to produce the enzyme cellulase were examined in the cellulolytic bacterium Cellulomonas flavigena KIST 321. The organism was found to require only thiamine for growth in mineral salts medium containing simple sugars or cellulose. Growth rates on various carbohydrates suggested that disruption of the crystalline structure was the rate-limiting step in the utilization of crystalline cellulose, and hydrolysis of the polymer itself was as rapid as the uptake of the hydrolytic product. When the organism was grown on cellulose the cellulolytic activity appeared to be bound to the cell at the beginning of the exponential growth phase: only after this did cell-free enzyme activity appear. The cell-free enzyme appeared to be unstable, and its activity decreased at the beginning of the stationary phase.


2006 ◽  
Vol 72 (12) ◽  
pp. 7559-7566 ◽  
Author(s):  
Paul J. Weimer ◽  
Neil P. J. Price ◽  
Otini Kroukamp ◽  
Lydia-Marie Joubert ◽  
Gideon M. Wolfaardt ◽  
...  

ABSTRACT Anaerobic cellulolytic bacteria are thought to adhere to cellulose via several mechanisms, including production of a glycocalyx containing extracellular polymeric substances (EPS). As the compositions and structures of these glycocalyces have not been elucidated, variable-pressure scanning electron microscopy (VP-SEM) and chemical analysis were used to characterize the glycocalyx of the ruminal bacterium Ruminococcus albus strain 7. VP-SEM revealed that growth of this strain was accompanied by the formation of thin cellular extensions that allowed the bacterium to adhere to cellulose, followed by formation of a ramifying network that interconnected individual cells to one another and to the unraveling cellulose microfibrils. Extraction of 48-h-old whole-culture pellets (bacterial cells plus glycocalyx [G] plus residual cellulose [C]) with 0.1 N NaOH released carbohydrate and protein in a ratio of 1:5. Boiling of the cellulose fermentation residue in a neutral detergent solution removed almost all of the adherent cells and protein while retaining a residual network of adhering noncellular material. Trifluoroacetic acid hydrolysis of this residue (G plus C) released primarily glucose, along with substantial amounts of xylose and mannose, but only traces of galactose, the most abundant sugar in most characterized bacterial exopolysaccharides. Linkage analysis and characterization by nuclear magnetic resonance suggested that most of the glucosyl units were not present as partially degraded cellulose. Calculations suggested that the energy demand for synthesis of the nonprotein fraction of EPS by this organism represents only a small fraction (<4%) of the anabolic ATP expenditure of the bacterium.


Author(s):  
Wijanarka Wijanarka ◽  
Endang Kusdiyantini ◽  
Sarjana Parman

<p>On the research of enzyme production levels observed cellulase produced by bacteria in the digestive tract of the isolation of the Snail (<em>Achatina fulica</em>). Isolation of bacteria based on the ability of bacteria to grow on CMC media. The purpose of this study was to determine cellulase activity by cellulolytic bacteria. Some bacterial isolates were identified as cellulolytic bacteria, they were KE-B1, KE-B2, KE-B3, KE-B4, KE-B5, and KE-B6. Isolates KE-B6 was the best isolates. Furthermore KE-B6 isolates were grown on media production to determine the pattern of growth and enzyme activity. Measurement of cell growth was conducted by inoculating starter aged 22 hours at CMC production of liquid medium. Cellulase enzyme activity measurements was performed by the DNS method. The results showed that the highest activity by new isolate bacteria KE-B6 and its value of the activity of 0.4539 U/mL, growth rate (µ) 0.377/hour and generation time (g) 1.84 hour. This research expected cellulase of producing bacteria were easy, inexpensive and efficient. This enzyme can be used as an enzyme biolytic once expected to replace expensive commercial enzyme. The biotylic enzyme can be applied to strains improvement (protoplast fusion).</p><p><strong>How to Cite</strong></p><p>Wijanarka, W., Kusdiyantini, E. &amp; Parman, S. (2016). Screening Cellulolytic Bacteria from the Digestive Tract Snail (<em>Achatina fulica</em>) and Test the Ability of Cellulase Activity. <em>Biosaintifika: Journal of Biology &amp; Biology Education</em>, 8(3), 386-392. </p>


2021 ◽  
Vol 934 (1) ◽  
pp. 012028
Author(s):  
U M Batubara ◽  
M Mardalisa ◽  
S Suparjo ◽  
H U Maritsa ◽  
E Pujianto ◽  
...  

Abstract Peatlands are terrestrial wetland ecosystems formed from piles of organic matter that decompose into organic deposits. Peat soil has a high potential to produce cellulose which, can be reused by cellulolytic bacteria. This study aims to find out the potential strain of cellulolytic bacteria isolated from peatland ecosystems. The method used was experimental, sequentially, the stages are isolation and screening for cellulolytic bacteria, quantitative testing of cellulolytic activity, characterizing the morphology and physiology of bacteria, and the identification of bacteria based on Bergey’s Manual of Determinative Bacteriology. The screening results obtained seven isolates of cellulolytic bacteria capable of hydrolysed cellulose on 1% Carboxy Methyl Cellulose (CMC) Agar Medium, namely SPS1, SPS2, SPS 3, SDG1, SDG 2, SPW1, and SPW4. Three of seven isolates obtained the highest cellulolytic index sequentially, namely SPS2 of 2.82, SPS3 of 2.65, and SDG1 of 2.47. The cellulolytic activity was indicated by the value of a halo zone around the colonies on 1 % CMC medium after being dripped with Congo red. The halo zone is an early indication to determine the ability of bacteria to decompose cellulose. Based on Bergey’s Manual of Determinative Bacteriology showed that the three isolates had the same characteristics as the genus Bacillus, Lactobacillus and Corynebacterium.


Author(s):  
Atia Iqbal ◽  
Mahnoor

Cellulases are inducible enzymes that are synthesized by many microorganisms during their growth on cellulosic materials. Production of cellulase enzyme from bacteria has gained interest for applications in industries owing to their stability, catalytic activity and ease of production. In current study, total 40 cellulolytic bacteria were screened by agar well diffusion assay followed by Congo red stain. Cellulolytic bacteria were evaluated for detergent compatibility and de-staining ability. Bacterial cellulase production was optimized at different environmental conditions. Biochemical testing was done following Bergey’s manual. Ten cellulolytic bacteria selected, were gram positive. Bacteria showed best cellulolytic activity at 40oC to 60oC, at pH 9, lactose as carbon source and peptone as nitrogen source. Best hydrolysis zone shown was 45mm from strain MS22 and least zone was 6mm. The maximum detergent activity for surf excel was observed for G2 while the lowest was observed for MW22. Similarly, maximum activity for ariel and bonus were observed for RS5 and C3. G1 and C3 showed better clearance of ink as compared to other strains. In de-staining, G1, C1and MW17 showed better clearance of edible oil and G1, C2 and MW18 showed better clearance of grease. These promising cellulolytic bacteria can be used for various applications in different industries.


2021 ◽  
Vol 3 (1) ◽  
pp. 185-190
Author(s):  
Dzun N. Jimat ◽  
Nur S. Talha ◽  
Nur F.D. Che Husin ◽  
Azlin S. Azmi ◽  
Raha A. Raus

The aim of this study was to screen few fungal isolates from local cocoa pod husks (CPH) which able to secrete cellulases. The isolates were plated on carboxymethyl cellulose (CMC) agar plates which then incubated for two days at 28ºC. Then, these plates were stained with congo red dye for 0.5-1 h followed by destaining with 1 M NaCl solution for 15-20 minutes to observe its cellulolytic activity. One isolates which exposed the largest cellulolytic zone on CMC agar plate was selected for further study. In this study, culture conditions with respect to pH, incubation time, amount of substrate (CPH) and temperature were screened using Design expert @version 8.0 by employing two-level factorial design. The selected fungus isolate was cultured in shake flask at 37°C with agitation of 200 rpm for 5 days in incubator shaker. During fermentation period, samples were collected every day for fungal-cellulases activity of filter paper activity (FPase) and carboxymethyl cellulase (CMCase) activity. Analysis of variance (ANOVA) of this study showed that the most significant parameters that affects the production of cellulases from the selected fungi isolates were the amount of substrate (CPH) used followed by the interaction of amount of substrate with pH (p< 0.05). It showed that the cellulases activity was high when the pH 9 with more amount of substrate used. However, it was observed that less significant changes of celllulases activity when different amount of substrate was used at same pH of 3. Based on the microscopic observation of isolate, it morphology was closed to Rhizopus sp.. In conclusion, it is suggested to optimize the selected culture parameters obtained in this study in order to maximize the activity of cellulases from the selected isolates.


2004 ◽  
Vol 186 (1) ◽  
pp. 136-145 ◽  
Author(s):  
Estelle Devillard ◽  
Dara B. Goodheart ◽  
Sanjay K. R. Karnati ◽  
Edward A. Bayer ◽  
Raphael Lamed ◽  
...  

ABSTRACT The cellulolytic bacterium Ruminococcus albus 8 adheres tightly to cellulose, but the molecular biology underpinning this process is not well characterized. Subtractive enrichment procedures were used to isolate mutants of R. albus 8 that are defective in adhesion to cellulose. Adhesion of the mutant strains was reduced 50% compared to that observed with the wild-type strain, and cellulose solubilization was also shown to be slower in these mutant strains, suggesting that bacterial adhesion and cellulose solubilization are inextricably linked. Two-dimensional polyacrylamide gel electrophoresis showed that all three mutants studied were impaired in the production of two high-molecular-mass, cell-bound polypeptides when they were cultured with either cellobiose or cellulose. The identities of these proteins were determined by a combination of mass spectrometry methods and genome sequence data for R. albus 8. One of the polypeptides is a family 9 glycoside hydrolase (Cel9B), and the other is a family 48 glycoside hydrolase (Cel48A). Both Cel9B and Cel48A possess a modular architecture, Cel9B possesses features characteristic of the B2 (or theme D) group of family 9 glycoside hydrolases, and Cel48A is structurally similar to the processive endocellulases CelF and CelS from Clostridium cellulolyticum and Clostridium thermocellum, respectively. Both Cel9B and Cel48A could be recovered by cellulose affinity procedures, but neither Cel9B nor Cel48A contains a dockerin, suggesting that these polypeptides are retained on the bacterial cell surface, and recovery by cellulose affinity procedures did not involve a clostridium-like cellulosome complex. Instead, both proteins possess a single copy of a novel X module with an unknown function at the C terminus. Such X modules are also present in several other R. albus glycoside hydrolases and are phylogentically distinct from the fibronectin III-like and X modules identified so far in other cellulolytic bacteria.


Sign in / Sign up

Export Citation Format

Share Document