scholarly journals Screening Cellulolytic Bacteria from the Digestive Tract Snail (Achatina fulica) and Test the Ability of Cellulase Activity

Author(s):  
Wijanarka Wijanarka ◽  
Endang Kusdiyantini ◽  
Sarjana Parman

<p>On the research of enzyme production levels observed cellulase produced by bacteria in the digestive tract of the isolation of the Snail (<em>Achatina fulica</em>). Isolation of bacteria based on the ability of bacteria to grow on CMC media. The purpose of this study was to determine cellulase activity by cellulolytic bacteria. Some bacterial isolates were identified as cellulolytic bacteria, they were KE-B1, KE-B2, KE-B3, KE-B4, KE-B5, and KE-B6. Isolates KE-B6 was the best isolates. Furthermore KE-B6 isolates were grown on media production to determine the pattern of growth and enzyme activity. Measurement of cell growth was conducted by inoculating starter aged 22 hours at CMC production of liquid medium. Cellulase enzyme activity measurements was performed by the DNS method. The results showed that the highest activity by new isolate bacteria KE-B6 and its value of the activity of 0.4539 U/mL, growth rate (µ) 0.377/hour and generation time (g) 1.84 hour. This research expected cellulase of producing bacteria were easy, inexpensive and efficient. This enzyme can be used as an enzyme biolytic once expected to replace expensive commercial enzyme. The biotylic enzyme can be applied to strains improvement (protoplast fusion).</p><p><strong>How to Cite</strong></p><p>Wijanarka, W., Kusdiyantini, E. &amp; Parman, S. (2016). Screening Cellulolytic Bacteria from the Digestive Tract Snail (<em>Achatina fulica</em>) and Test the Ability of Cellulase Activity. <em>Biosaintifika: Journal of Biology &amp; Biology Education</em>, 8(3), 386-392. </p>

DEPIK ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 243-250
Author(s):  
Irma Dewiyanti ◽  
Darmawi Darmawi ◽  
Zainal Abidin Muchlisin ◽  
Teuku Zahrial Helmi ◽  
Iko Imelda Arisa ◽  
...  

Cellulolytic bacteria that produce cellulase enzymes play an essential role in degrading cellulose in their habitat. The presence of cellulolytic bacteria strongly supports the fertility and productivity in mangrove waters. The objectives of the study are to analyze the activity of cellulase enzyme qualitatively through the cellulolytic index and quantitatively through the activity and specific activity of the cellulase enzyme from bacteria isolated from the water of mangrove ecosystems in Aceh Province. The qualitative experiment of enzyme activity was carried out at the Microbiology laboratory SKIPM Aceh, and a quantitative experiment of enzyme activity was conducted at the Microbiology Laboratory, Biology Department, IPB. Isolation of cellulolytic bacteria isolated from mangrove water used Carboxy Methyl Cellulose (1% CMC) selective media and carried out by spread plate method. The ability of bacteria to produce cellulase was tested qualitatively using the spot technique, this test was carried out using 1% Congo Red. Furthermore, the quantitative testing of cellulase enzymes activity adopted the DNS spectrophotometric method. The specific activity of the cellulase enzyme can be determined by using the Lowry method. There were 21 isolates that had a clear zone and had the ability to produce cellulase enzymes from 49 isolates that were successfully purified. The highest cellulolytic index (CI) produced using BAM421 isolate with the value of 5.50 was included in the high category, followed by BAM326 and BAM132 isolates, with values of 1.55 and 1.05 were categorized into the medium category. The other isolates were in the low cellulolytic index category. The isolate with the highest CI value was further tested using the quantitative enzyme activity test. The highest cellulase enzyme activity of BAM421 occurred at 24hr (0.0029 U/ml). The highest specific cellulase activity of BAM421 was at 24hr with the value of 0.210 U/mg. The result concluded that the qualitative test showed CI values can be categorized into low, medium, and high. Moreover, the value of the quantitative assay described that the cellulase enzyme and the specific enzyme activities of the bacteria were low in the study area.Keywords:Cellulolytic indexQuantitative testMangrove watersCellulase enzymeMicroorganismTRANSLATE with x EnglishArabicHebrewPolishBulgarianHindiPortugueseCatalanHmong DawRomanianChinese SimplifiedHungarianRussianChinese TraditionalIndonesianSlovakCzechItalianSlovenianDanishJapaneseSpanishDutchKlingonSwedishEnglishKoreanThaiEstonianLatvianTurkishFinnishLithuanianUkrainianFrenchMalayUrduGermanMalteseVietnameseGreekNorwegianWelshHaitian CreolePersian //  TRANSLATE with COPY THE URL BELOW Back EMBED THE SNIPPET BELOW IN YOUR SITE Enable collaborative features and customize widget: Bing Webmaster PortalBack//


2019 ◽  
Vol 11 (2) ◽  
pp. 64-71
Author(s):  
Wijanarka Wijanarka ◽  
Sri Pujiyanto ◽  
Budi Raharjo

Glucanolitic bacteria are bacteria that have the ability to break down glucan into glucose monomer units. The ability of the bacteria is caused by the presence of glucanase enzymes. The choice of glucanase derived from bacteria is based on the ability and speed of bacterial growth in terms of producing glucanase enzymes. The presence of bacteria and protozoa in the digestive tract symbiotic with each other to digest cellulose or concomitant materials . Based on the ability of the way of life to digest forage and leaf litter, it is suspected that snails (Achatina fulica) have the ability to produce glucanase biocatalysts, especially in the digestive tract. To find out the characteristics and characteristics of indigenous bacteria snail canals, identification of KE-B6 bacteria is carried out molecularly so that accurate and accurate results are obtained. The Basic Alignment Search Tools BLAST results of KE-B6 bacterial isolates based on 16S rDNA sequence data with 27F (Forward) and 1492R (Reverse) primers showed that these bacterial isolates had homology of 99.64% to Serratia marcescens.  Key words: bacteria, glucanolitic, A. fulica, Serratia marcescens.


2022 ◽  
Vol 951 (1) ◽  
pp. 012113
Author(s):  
I Dewiyanti ◽  
D Darmawi ◽  
Z A Muchlisin ◽  
T Z Helmi ◽  
I I Arisa ◽  
...  

Abstract Cellulolytic bacteria is one of the beneficial bacteria that can found in mangrove ecosystem. The purposes of study were to analyse the cellulolytic index, and to analyse the cellulase activity of bacteria isolated from soil mangrove. Qualitatively, assessment of cellulase activity were carried out at the Microbiology laboratory of Fish Quarantine Station, Quality Control and Safety of Fishery Products (SKIPM) Aceh, while quantitatively was observed in microbiology laboratory, Biology Department, IPB. Assessment of qualitative cellulase activity is performed by growing the selected pure isolate on 1% CMC medium then spilled 1% congo red to test its cellulolytic potential. Cellulolytic potential was determined by clear zone performed around the colony after congo red flooded. The quantitative cellulase enzyme activity test carried out by DNS method tested on one selective isolate. There were 21 from 39 isolates showed a clear zone isolated from mangrove soil. The cellulolytic index (CI) obtained ranged from 0.07 to 0.80 classified as low cellulolytic index criteria. The cellulolytic index was higher in bacteria isolated from mangrove rehabilitated than mangrove unrehabilitated. The highest cellulase activity and specific cellulase activity of BTMD32 was at 48 hours with the value were 0.0012 U/ml, 0.077 U/mg, respectively. The result concluded that the bacteria cellulolytic isolated from mangrove soil had low cellulolytic index, low cellulase activity, and low specific cellulase activity.


Jurnal BiBieT ◽  
2017 ◽  
Vol 2 (2) ◽  
pp. 68
Author(s):  
Sri Indrayati ◽  
Yulia M Nur ◽  
Periadnadi Periadnadi ◽  
Nurmiati Nurmiati

<p><span lang="IN">Konversi Ampas sagu menggunakan kapang</span><em>Trichoderma harzianum </em>merupakan salah satu penerapan teknologi alami untuk menghasilkan bahan pakan alternatif untuk ayam broiler.  Untuk meningkatkan efisiensi kecernaannya juga dapat ditambahkan probiotik yang diisolasi dari mikroflora usus ayam broiler. Tujuan penelitian untuk melihat kemampuan enzimatis (selulase dan amilase) dari Kapang <em>Trichoderma harzianum </em>dalam menfermentasi ampas sagu menjadi pakan ayam broiler dan selanjutnya untuk mengetahui proses pengeringan pakan konsentrat  berprobiotik yang tepat. Penelitian ini telah dilaksanakan pada bulan Desember 2016 sampai Agustus tahun 2017 di Laboratorium Kopertis X, Padang. Penelitian ini menggunakan metoda eksperimen dengan tiga ulangan dan dua tahap penelitian. Tahap pertama adalah fermentasi ampas sagu menggunakan koji dari kapang <em>Trichoderma harzianum</em>. Sedangkan tahap kedua adalah pembuatan pakan konsetrat dengan penambahan isolat probiotik dari pencernaan ayam broiler dengan pengeringan matahari, pengeringan angin, dan pengeringan suhu 50<sup>o</sup>C. Hasil penelitian menunjukkan kemampuan enzimatis kapang <em>Trichoderma harzianum</em> dalam memfermentasi sagu adalah aktivitas amilase 1,420Unit/g,  aktivitas selulase 0,427 Unit/g, kadar glukosa 36,150 μg/g, dan nilai PH 4,20. Sedangkan proses pengeringan yang paling baik untuk pengembangan pakan konsentrat probiotik dari ampas sagu adalah pengeringan matahari dengan total populasi bakteri amilolitik 97x10<sup>9 </sup>cfu/g, total populasi  bakteri selulolitik 89x10<sup>7</sup> cfu/g, aktivitas enzim amilase 2,012 unit/g, aktivitas enzim selulase 1,870 unit/g, kadar glukosa105,311 μg/g, dan nilai pH 6,34</p><p><em><span lang="IN">Conversion of sago dregs (Metroxylon sagu) using Trichoderma harzianum mold is one of the applications of natural technology to produce alternative feed material for broiler chicken. To increase the efficiency of digestibility can also be added probiotics isolated from the intestinal microflora of broiler chickens. The objective of the study was to look at enzymatic capability (cellulase and amylase) from Trichoderma harzianum mold in fermenting sago dregs into broiler feed and then to know the process of drying the right concentrates of poultry feed. This research was conducted in December 2016 until August 2017 at Kopertis X Laboratory, Padang. This research used experimental method with three replications and two research phases. The first stage is the fermentation of sago dregs(Metroxylon sagu) using koji from Trichoderma harzianum mold. While the second stage is the manufacture of concrete feed with the addition of probiotic isolates from the digestion of broiler chickens with sun drying, wind draining, and 50<sup>o</sup>C drying temperature. The results showed that enzymatic capability of Trichoderma harzianum in fermentation of sago dregs was 1.420 Unit/g amylase activity, cellulase activity 0,427 Unit/g, glucose level 36,150 μg/g, and PH value 4,20. While the best drying process for the development of probiotic concentrate feed from sago dregs is sun drying with total population of amylolitic bacteria 97x10<sup>9</sup> cfu/g, total population of cellulolytic bacteria 89x10<sup>7</sup> cfu/g, amylase enzyme activity 2,012 unit/g, cellulase enzyme activity 1,870 units/g, glucose 105,311 μg/g, and pH value of 6.34</span></em></p>


2021 ◽  
Vol 924 (1) ◽  
pp. 012075
Author(s):  
A A Brahmanti ◽  
E Martati ◽  
A K Wardani

Abstract Cellulolytic microorganism has immense potential due to their cellulase production, enzyme complexity and widespread habitat of life. This study was conducted to obtain microbial cellulase with vast industrial applicability from the coffee industry by-product in East Java, Indonesia. Fifty-four isolates with significant clear zone formation were obtained by Congo red staining in CMC agar plates. Eighteen bacteria, two yeasts and two moulds with high cellulolytic index were subjected to protein content determination as well as reducing sugar analysis in various conditions such as pH, temperature, addition of metal ions, surfactant and inhibitor agent. The specific activity measurements of all the crude enzymes result in the highest value of cellulase activity produced by isolate C12 which was 0.401 ± 0.018 U/mg. This enzyme activity was known to be optimum at 50°C and pH 9. It was also stimulated by K+, Na+, Mg2+, Fe3+, and SDS. However, the enzyme activity was inhibited by EDTA at 10 mM concentration. The use of coffee industry by-products as the source of cellulolytic microorganisms offers a promising approach for its various types of indigenous microorganisms and their unique property of cellulase produced that is useful for industrial application.


2019 ◽  
Vol 5 (2) ◽  
pp. 71
Author(s):  
Fatur Rahman ◽  
Ismiati Ismiati ◽  
Arbai Nurhasanah

The activity of the digestive function of animals is influenced by the secretion of extracellular enzymes from bacteria in the digestive tract. This study aims to evaluate the distribution of bacteria producing protease enzyme, amylase and lipase from the digestive tract of pearl lobster, Panulirus ornatus. Bacterial isolates that have extracellular enzyme activity are based on their ability to form clear zones in the test media. The results showed that of 51 bacterial isolates from the digestive tract of P. ornatus, proteolytic bacteria were 27.45%, amylolytic bacteria were 23.53% and lipolytic bacteria were 21.77%. Based on bacterial dominance in the gastrointestinal segment, namely the cardiac, piloric and intestinal sections, it was dominated by amylolytic bacteria at 33.33%, proteolytic at 37.50% and lipolytic at 29.41%. The activity of proteolytic, amylolytic and lipolytic bacteria based on the highest clear zone diameter was achieved respectively by SP5 isolates of 12 mm, SK10 isolates of 21 mm and SU15 isolates of 20 mm. The three bacterial isolates were potential as probiotic aquacultur candidates


2021 ◽  
Vol 10 (4) ◽  
pp. 699-711
Author(s):  
Weerasinghe Mudiyanselage Lakshika Iroshani Weerasinghe ◽  
Dampe Acharige Tharindu Madusanka ◽  
Pathmalal Marakkale Manage

Over the last decades, the negative impacts of fossil fuel on the environment and increasing demand for energy due to the unavoidable depletion of fossil fuels, has transformed the world’s interests towards alternative fuels. In particular, bioethanol production from cellulosic biomass for the transportation sector has been incrementing since the last decade. The bacterial pathway for bioethanol production is a relatively novel concept and the present study focused on the isolation of potential “cellulase-producing” bacteria from cow dung, compost soil, and termite gut and isolating sugar fermenting bacteria from palm wine. To select potential candidates for cellulase enzyme production, primary and secondary assays were conducted using the Gram’s iodine stain in Carboxy Methyl Cellulose (CMC) medium and the Dinitrosalicylic acid (DNS) assays, respectively. Durham tube assay and Solid-Phase Micro-Extraction (SPME) coupled with Gas Chromatography-Mass Spectrometry (GC-MS) was used to evaluate the sugar fermenting efficiency of the isolated bacteria. Out of 48 bacterial isolates, 27 showed cellulase activity where Nocardiopsis sp. (S-6) demonstrated the highest extracellular crude enzyme activity of endoglucanase (1.56±0.021 U) and total cellulase activity (0.93±0.012 U). The second-highest extracellular crude enzyme activity of endoglucanase (0.21±0.021 U) and total cellulase activity (0.35±0.021 U) was recorded by Bacillus sp. (T-4). Out of a total of 8 bacterial isolates, Achromobacter sp. (PW-7) was positive for sugar fermentation resulting in 3.07% of ethanol in broth medium at 48 h incubation. The results of the study revealed that Nocardiopsis sp. (S-6) had the highest cellulase enzyme activity. However, the highest ethanol percentage was achieved with by having both Bacillus sp. (T-4) and Achromobacter sp. (PW-7) for the simultaneous saccharification and fermentation (SSF) method, as compared to separate hydrolysis and fermentation (SHF) methodologies. 


2018 ◽  
Vol 41 (3) ◽  
pp. 255-264 ◽  
Author(s):  
J. Abraham Pérez-Pérez ◽  
David Espinosa-Victoria ◽  
Hilda V. Silva-Rojas ◽  
Lucía López-Reyes

Bacteria are an unavoidable component of the natural earthworm diet; thus, bacterial diversity in the earthworm gut is directly linked to decomposition of organic matter and development of the surrounding plants. The aim of this research was to isolate and to identify biochemically and molecularly the culturable bacterial microbiota of the digestive tract of Eisenia foetida. Earthworms were sourced from Instituto de Reconversión Productiva y Bioenergética (IRBIO) and Colegio de Postgraduados (COLPOS), México. Bacterial isolation was carried out on plates of Brain Heart Infusion (BHI) culture medium. Fifty six and 44 bacterial isolates were obtained from IRBIO and COLPOS, respectively. The population was composed of 44 Gram-negative and 56 Gram-positive isolates. Over 50 % of the bacterial isolates were rod-shaped cells. The 16S rRNA gene was sequenced and nine genera were identified in worms from IRBIO (Bacillus, Paenibacillus, Solibacillus, Staphylococcus, Arthrobacter, Pantoea, Stenotrophomonas, Acinetobacter and Aeromonas) and six in worms from COLPOS (Bacillus, Paenibacillus, Stenotrophomonas, Staphylococcus, Acinetobacter and Aeromonas). Bacillus was the predominant genus, with eight and six species in the oligochaetes from IRBIO and COLPOS, respectively. The most represented bacteria in the worms from both sites were Bacillus sp. and B. subtilis. The predominance of Bacillus was probably due to spore formation, a reproductive strategy that ensures survival and dispersion in the soil and oligochaetes digestive tract. The gut of E. foetida not only harbored bacterial species of agronomic importance but also species potentially pathogenic for humans (Staphylococcus warneri, Pantoea agglomerans and Stentrophomonas sp.). The larger bacterial diversity in worms from IRBIO could be due to their feeding on cattle manure, which is a rich source of bacteria.


Sign in / Sign up

Export Citation Format

Share Document