scholarly journals Graphene and its Phononics: A Review

2021 ◽  
Vol 33 (5) ◽  
pp. 30-38
Author(s):  
FAREED AHMAD ◽  
◽  
SUNDAR SINGH ◽  

Graphene, a unique allotrope of carbon, has garnered a huge amount of attention amongst researchers as its unique properties and promising applications in various real-life domains like in efficient batteries, solar cells, medicinal technologies, environmental remediation, circuit boards, lighting and display, and anti-corrosion has resulted in its commercial exploitation and implementation in everyday life. Since 2004 graphene has been one of the most beautiful scientific and technological achievements. The unique electronic cloud forming the bond between different carbon atoms in graphene leads to several inquisitive questions raised in the field of quantum physics. Till now graphene has been exploited for its electronic and optical properties but new research has shown that phononic properties of graphene will lead to the development of “killer” practical applications in the future. In this review article we have explored the structure, properties and the phononics of graphene with a special reference to few-layer graphene (FLG) and graphene Thermal Interface Materials (TIMs).

2009 ◽  
Vol 1158 ◽  
Author(s):  
WEI LIN ◽  
Chingping Wong

AbstractVertically aligned carbon nanotubes (VACNTs) grown on bulk copper substrate are of great importance for CNT real-life applications as thermal interface materials in microelectronic packaging. However, their reproducible synthesis has been a great challenge so far. In this study, by introducing a well-controlled conformal Al2O3 support layer on the bulk copper substrate by atomic layer deposition (ALD) prior to the deposition of the iron catalyst layer, we reproducibly synthesize VACNTs of good alignment and high quality on the copper substrate, using a conventional thermal chemical vapor deposition process. The alignment and the quality are characterized by scanning electronic microscopy and Raman spectroscopy, respectively. The roles of the conformal Al2O3 support layer are discussed. A kinetics-controlled growth mechanism is shown. This progress provides a viable VACNT commercial application for thermal management, on the basis of which, we show a recent progress on a state-of-art Si/VACNT/Cu assembling process, named “chemical anchoring”. The high quality of the VACNTs on the copper growth substrate and the covalent bonding formed between the VACNTs and the silicon mating substrate greatly reduces the thermal resistance of the VACNT-mediated thermal interface.


2008 ◽  
Vol 13 (1) ◽  
pp. 64-78 ◽  
Author(s):  
Moshe Zeidner ◽  
Richard D. Roberts ◽  
Gerald Matthews

Almost from its inception, the emotional intelligence (EI) construct has been an elusive one. After nearly 2 decades of research, there still appears to be little consensus over how EI should be conceptualized or assessed and the efficacy of practical applications in real life settings. This paper aims at providing a snapshot of the state-of-the-art in research involving this newly minted construct. Specifically, in separate sections of this article, we set out to distinguish what is known from what is unknown in relation to three paramount concerns of EI research, i.e., conceptualization, assessment, and applications. In each section, we start by discussing assertions that may be made with some degree of confidence, elucidating what are essentially sources of consensus concerning EI. We move then to discuss sources of controversy; those things for which there is less agreement among EI researchers. We hope that this “straight talk” about the current status of EI research will provide a platform for new research in both basic and applied domains.


2020 ◽  
Vol 6 (5) ◽  
pp. 179-192
Author(s):  
Ziyi Guo ◽  
Jian Liu ◽  
Da-Wei Wang ◽  
Jiangtao Xu ◽  
Kang Liang

Abstract Micro/nanomotors (MNMs) are tiny motorized objects that can autonomously navigate in complex fluidic environments under the influence of an appropriate source of energy. Internal energy-driven MNMs are composed of certain reactive materials that are capable of converting chemical energy from the surroundings into kinetic energy. Recent advances in smart nanomaterials design and processing have endowed the internal energy-driven MNMs with different geometrical designs and various mechanisms of locomotion, with remarkable traveling speed in diverse environments ranging from environmental water to complex body fluids. Among the different design principals, MNM systems that operate from biocatalysis possess biofriendly components, efficient energy conversion, and mild working condition, exhibiting a potential of stepping out of the proof-of-concept phase for addressing many real-life environmental and biotechnological challenges. The biofriendliness of MNMs should not only be considered for in vivo drug delivery but also for environmental remediation and chemical sensing that only environmentally friendly intermediates and degraded products are generated. This review aims to provide an overview of the recent advances in biofriendly MNM design using biocatalysis as the predominant driving force, towards practical applications in biotechnology and environmental technology.


2021 ◽  
Vol 7 (3) ◽  
pp. 53
Author(s):  
Jacob S. Lewis

The majority of research into few layer graphene (FLG) thermal interface materials (TIM) concerns the direct quantification of innate composite properties with much less direct analysis of these materials in realistic applications. In this study, equilibrium temperatures of engineered device substitutes fixed to passive heat sink solutions with varying FLG concentration TIMs are experimentally measured at varying heat dissipation rates. A custom, precisely-controlled heat source’s temperature is continually measured to determine equilibrium temperature at a particular heat dissipation. It is found that altering the used FLG TIM concentrations from 0 vol.% to as little as 7.3 vol.% resulted in a decrease of combined TIM and passively-cooled heat sink thermal resistance from 4.23∘C/W to 2.93∘C/W, amounting to a reduction in operating temperature of ≈108∘C down to ≈85∘C at a heat dissipation rate of 20 W. The results confirm FLG TIMs’ promising use in the application of device heat dissipation in a novel, controllable experimental technique.


2020 ◽  
Vol 48 (2) ◽  
pp. 399-409
Author(s):  
Baizhen Gao ◽  
Rushant Sabnis ◽  
Tommaso Costantini ◽  
Robert Jinkerson ◽  
Qing Sun

Microbial communities drive diverse processes that impact nearly everything on this planet, from global biogeochemical cycles to human health. Harnessing the power of these microorganisms could provide solutions to many of the challenges that face society. However, naturally occurring microbial communities are not optimized for anthropogenic use. An emerging area of research is focusing on engineering synthetic microbial communities to carry out predefined functions. Microbial community engineers are applying design principles like top-down and bottom-up approaches to create synthetic microbial communities having a myriad of real-life applications in health care, disease prevention, and environmental remediation. Multiple genetic engineering tools and delivery approaches can be used to ‘knock-in' new gene functions into microbial communities. A systematic study of the microbial interactions, community assembling principles, and engineering tools are necessary for us to understand the microbial community and to better utilize them. Continued analysis and effort are required to further the current and potential applications of synthetic microbial communities.


Author(s):  
Wei Yu ◽  
◽  
Changqing Liu ◽  
Lin Qiu ◽  
Ping Zhang ◽  
...  

Author(s):  
Ron Avi Astor ◽  
Rami Benbenisthty

Since 2005, the bullying, school violence, and school safety literatures have expanded dramatically in content, disciplines, and empirical studies. However, with this massive expansion of research, there is also a surprising lack of theoretical and empirical direction to guide efforts on how to advance our basic science and practical applications of this growing scientific area of interest. Parallel to this surge in interest, cultural norms, media coverage, and policies to address school safety and bullying have evolved at a remarkably quick pace over the past 13 years. For example, behaviors and populations that just a decade ago were not included in the school violence, bullying, and school safety discourse are now accepted areas of inquiry. These include, for instance, cyberbullying, sexting, social media shaming, teacher–student and student–teacher bullying, sexual harassment and assault, homicide, and suicide. Populations in schools not previously explored, such as lesbian, gay, bisexual, transgender, and queer students and educators and military- and veteran-connected students, become the foci of new research, policies, and programs. As a result, all US states and most industrialized countries now have a complex quilt of new school safety and bullying legislation and policies. Large-scale research and intervention funding programs are often linked to these policies. This book suggests an empirically driven unifying model that brings together these previously distinct literatures. This book presents an ecological model of school violence, bullying, and safety in evolving contexts that integrates all we have learned in the 13 years, and suggests ways to move forward.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1890
Author(s):  
Monika Rdest ◽  
Dawid Janas

This perspective article describes the application opportunities of carbon nanotube (CNT) films for the energy sector. Up to date progress in this regard is illustrated with representative examples of a wide range of energy management and transformation studies employing CNT ensembles. Firstly, this paper features an overview of how such macroscopic networks from nanocarbon can be produced. Then, the capabilities for their application in specific energy-related scenarios are described. Among the highlighted cases are conductive coatings, charge storage devices, thermal interface materials, and actuators. The selected examples demonstrate how electrical, thermal, radiant, and mechanical energy can be converted from one form to another using such formulations based on CNTs. The article is concluded with a future outlook, which anticipates the next steps which the research community will take to bring these concepts closer to implementation.


Sign in / Sign up

Export Citation Format

Share Document