scholarly journals Neural Network Modeling of Cutting Force and Chip Thickness Ratio for Turning Aluminum Alloy 7075-T6

2018 ◽  
Vol 14 (1) ◽  
pp. 67-76
Author(s):  
Mohanned Mohammed H. AL-Khafaji

The turning process has various factors, which affecting machinability and should be investigated. These are surface roughness, tool life, power consumption, cutting temperature, machining force components, tool wear, and chip thickness ratio. These factors made the process nonlinear and complicated. This work aims to build neural network models to correlate the cutting parameters, namely cutting speed, depth of cut and feed rate, to the machining force and chip thickness ratio. The turning process was performed on high strength aluminum alloy 7075-T6. Three radial basis neural networks are constructed for cutting force, passive force, and feed force. In addition, a radial basis network is constructed to model the chip thickness ratio. The inputs to all networks are cutting speed, depth of cut, and feed rate. All networks performances (outputs) for all machining force components (cutting force, passive force and feed force) showed perfect match with the experimental data and the calculated correlation coefficients were equal to one. The built network for the chip thickness ratio is giving correlation coefficient equal one too, when its output compared with the experimental results. These networks (models) are used to optimize the cutting parameters that produce the lowest machining force and chip thickness ratio. The models showed that the optimum machining force was (240.46 N) which can be produced when the cutting speed (683 m/min), depth of cut (3.18 mm) and feed rate (0.27 mm/rev). The proposed network for the chip thickness ratio showed that the minimum chip thickness is (1.21), which is at cutting speed (683 m/min), depth of cut (3.18 mm) and feed rate (0.17 mm/rev).

2018 ◽  
Vol 18 (1) ◽  
pp. 110-124
Author(s):  
Mohanned H AL-Khafaji

In turning operation, numerous parameters are utilized to analyze machinability. Parameters,for instant, tool wear, tool life, cutting temperature, machining force components, powerconsumption, surface roughness, and chip thickness ratio are frequently utilized. The goal ofthis work is to model the effect of cutting parameters (cutting speed, depth of cut and feedrate) on the machining force and chip thickness ratio during turning ductile aluminum 1350-O. Four fuzzy logic models were built to model the relationship between cutting parametersand the three force components of machining force and the chip thickness ration. The inputsto all fuzzy logic models are cutting speed, depth of cut and feed rate. Whereas, the outputfor first, second, third and fourth models are cutting force, passive force, feed force and chipthickness ratio, respectively. All fuzzy models showed good match to the experimental dataand the computed correlation coefficients were larger than or equal 0.9998. Those modelswere used to optimize the cutting process and give the optimum cutting parameters.


2013 ◽  
Vol 641-642 ◽  
pp. 367-370
Author(s):  
Gui Qiang Liang ◽  
Fei Fei Zhao

Abstract In the present study, an attempt has been made to investigate the effect of cutting parameters (cutting speed, feed rate and depth of cut) on cutting forces (feed force, thrust force and cutting force) and surface roughness in milling of Quartz glas using diamond wheel. The cutting process in the up-cut milling of glass is discussed and the cutting force measured. The cutting force gradually increases with the cutter rotation at the beginning of the cut, and oscillates about a constant mean value after a certain undeformed chip thickness. The results show that cutting forces and surface roughness do not vary much with experimental cutting speed in the range of 55–93 m/min. The suggested models of cutting forces and surface roughness and adequately map within the limits of the cutting parameters considered.


2010 ◽  
Vol 154-155 ◽  
pp. 694-700
Author(s):  
Yue Ding ◽  
Xi Bin Wang ◽  
Li Jing Xie ◽  
Hao Yang

The objective of this paper is to study the cutting forces in hard turning T250 steel with CBN tools. Experiments based on the Box-Behnken design were conducted to develop the cutting forces models by response surface methodology (RSM). Significance tests of the model are performed by the analysis of variance (ANOVA). It is also discussed the effects of cutting parameters (cutting speed, feed rate and depth of cut) on the cutting force components. The results show that the models can fit experimental data via analysis of variance. The most important cutting parameter is depth of cut, followed by feed rate, while the effect of cutting speed can be neglected. Compared to cutting force and feed force, thrust force is the largest. In addition, the cutting forces generated by the uncoated tool are smaller than by the coated one due to tool wear.


2010 ◽  
Vol 447-448 ◽  
pp. 51-54
Author(s):  
Mohd Fazuri Abdullah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Abu Bakar Sulong ◽  
Jaharah A. Ghani

The effects of different cutting parameters, insert nose radius, cutting speed and feed rates on the surface quality of the stainless steel to be use in medical application. Stainless steel AISI 316 had been machined with three different nose radiuses (0.4 mm 0.8 mm, and 1.2mm), three different cutting speeds (100, 130, 170 m/min) and feed rates (0.1, 0.125, 0.16 mm/rev) while depth of cut keep constant at (0.4 mm). It is seen that the insert nose radius, feed rates, and cutting speed have different effect on the surface roughness. The minimum average surface roughness (0.225µm) has been measured using the nose radius insert (1.2 mm) at lowest feed rate (0.1 mm/rev). The highest surface roughness (1.838µm) has been measured with nose radius insert (0.4 mm) at highest feed rate (0.16 mm/rev). The analysis of ANOVA showed the cutting speed is not dominant in processing for the fine surface finish compared with feed rate and nose radius. Conclusion, surface roughness is decreasing with decreasing of the feed rate. High nose radius produce better surface finish than small nose radius because of the maximum uncut chip thickness decreases with increase of nose radius.


2020 ◽  
Vol 36 ◽  
pp. 28-46
Author(s):  
Youssef Touggui ◽  
Salim Belhadi ◽  
Salah Eddine Mechraoui ◽  
Mohamed Athmane Yallese ◽  
Mustapha Temmar

Stainless steels have gained much attention to be an alternative solution for many manufacturing industries due to their high mechanical properties and corrosion resistance. However, owing to their high ductility, their low thermal conductivity and high tendency to work hardening, these materials are classed as materials difficult to machine. Therefore, the main aim of the study was to examine the effect of cutting parameters such as cutting speed, feed rate and depth of cut on the response parameters including surface roughness (Ra), tangential cutting force (Fz) and cutting power (Pc) during dry turning of AISI 316L using TiCN-TiN PVD cermet tool. As a methodology, the Taguchi L27 orthogonal array parameter design and response surface methodology (RSM)) have been used. Statistical analysis revealed feed rate affected for surface roughness (79.61%) and depth of cut impacted for tangential cutting force and cutting power (62.12% and 35.68%), respectively. According to optimization analysis based on desirability function (DF), cutting speed of 212.837 m/min, 0.08 mm/rev feed rate and 0.1 mm depth of cut were determined to acquire high machined part quality


1970 ◽  
Vol 40 (2) ◽  
pp. 95-103 ◽  
Author(s):  
Md. Anayet Patwari ◽  
A.K.M. Nurul Amin ◽  
Waleed F. Faris

The present paper discusses the development of the first and second order models for predicting the tangential cutting force produced in end-milling operation of medium carbon steel. The mathematical model for the cutting force prediction has been developed, in terms of cutting parameters cutting speed, feed rate, and axial depth of cut using design of experiments and the response surface methodology (RSM). All the individual cutting parameters affect on cutting forces as well as their interaction are also investigated in this study. The second order equation shows, based on the variance analysis, that the most influential input parameter was the feed rate followed by axial depth of cut and, finally, by the cutting speed. Central composite design was employed in developing the cutting force models in relation to primary cutting parameters. The experimental results indicate that the proposed mathematical models suggested could adequately describe the performance indicators within the limits of the factors that are being investigated. The adequacy of the predictive model was verified using ANOVA at 95% confidence level. This paper presents an approach to predict cutting force model in end milling of medium carbon steel using coated TiN insert under dry conditions and full immersion cutting.Keywords: Tangential Cutting Forces; RSM; coated TiN; model.DOI: 10.3329/jme.v40i2.5350Journal of Mechanical Engineering, Vol. ME 40, No. 2, December 2009 95-103


Author(s):  
M. M. Reddy ◽  
N. S. Reddy ◽  
J. N. Evan

Past two decades, the usage of ceramic tools has increased especially in milling and turning process. These advanced ceramic tools have good characteristics that are capable in maintaining high hardness in temperatures and also wears much slower when compared to carbide tools. With limited data available on the tool itself, research is to be done on these advance ceramic tools. The main purpose of this research project is to determine the cutting parameters affecting the cutting temperature and cutting force. The cutting parameters are cutting speed, depth of cut and feed rate. Silicon Nitride is chosen as the tool and Steel AISI4140 is chosen as the work piece. Analysis is conducted through Box-Behnken method with 3 levels, 3 factors and 2 responses. The regression model for cutting temperature and cutting force responses are identified. Analysis of Variance (ANOVA) is done to determine the effect of the cutting parameters and their contribution towards the cutting temperature and cutting force response. It is found that feed rate has the most influence on cutting temperature and force. The optimal cutting parameters that produce the lowest cutting temperature and lowest cutting force are also obtained.


2014 ◽  
Vol 612 ◽  
pp. 123-129
Author(s):  
Hari Vasudevan ◽  
Naresh Deshpande ◽  
Ramesh Rajguru

Many glass fiber reinforced plastic (GFRP) composite components made from primary melt processes require additional machining to meet the requirements of assembly and accurate dimensional tolerances. Importance of woven fabric based glass fibre reinforced composites is widely known in many industrial applications. However, very little is known about machinability of these composites. Cutting force is treated as one of the primary measures for determining the machinability of any material.This paper presents an investigation into the longitudinal turning of woven fabric and epoxy based GFRP composites, using polycrystalline diamond tool, so as to analyze the effect of cutting parameters and insert radius on the cutting force. The force was measured through longitudinal turning, according to the experimental plan, as developed on the basis of Taguchi methodology. The signal to noise ratio and analysis of variance were applied to the experimental data, in order to determine the effect of the process variables on tangential cutting force. Statistical results indicated that the cutting force is significantly influenced (at a 95% confidence level) by feed rate, followed by depth of cut, whereas, cutting speed and insert radius have a smaller influence. The cutting force also increases with the increase in feed rate and depth of cut.


2021 ◽  
Vol 24 (2) ◽  
pp. 5-8
Author(s):  
Anđelko Aleksić ◽  
◽  
Milenko Sekulić ◽  
Marin Gostimirović ◽  
Dragan Rodić ◽  
...  

The objective of this paper is to investigate the effect of cutting parameters on cutting forces during turning of CPM 10V steel with coated cutting tool. Machining of CPM 10V steel and finding a suitable tool is very challenging due to its physical and mechanical properties, especially since the machining of this material has not been extensively researched. The experiments were carried out using an Index GU -600 CNC lathe and the cutting forces were measured in process. A three-factorial three-level experimental design was used for the experiments. Statistical method analysis of variance (ANOVA) is applied to study the effects of cutting speed, feed rate, and depth of cut on cutting forces. The results of this study show that depth of cut has the most significant effect on main force and radial force, while feed rate and cutting speed have the most significant effect on feed force. The developed model can be used in the machining industry to predict and analyze cutting parameters for optimal cutting forces.


Mechanika ◽  
2020 ◽  
Vol 26 (3) ◽  
pp. 231-241 ◽  
Author(s):  
Mustafa ÖZDEMİR ◽  
Mehmet Tuncay KAYA ◽  
Hamza Kemal AKYILDIZ

In this study, effects of cutting speed (V), feed rate (f), depth of cut (a) and tool tip radius (R) on  surface roughness (Ra, Rz, and Rt) and cutting forces (radial force (Fx), tangential force (Fy), and feed force (Fz)) in hard finish turning processes of hardened 42CrMo4 (52 HRC) material was investigated experimentally. Taguchi’s mixed level parameter design (L18) is used for the experimental design (2x1,3x3). The signal-to-noise ratio (S/N) was used in the evaluation of test results.  By using Taguchi method, cutting parameters giving optimum surface roughness and cutting forces were determined. Regression analyses are applied to predict surface roughness and cutting forces. Analysis of variance (ANOVA) is used to determine the effects of the machining parameters on surface roughness and cutting forces. According to ANOVA analysis, the most important cutting parameters were found to be feed rate for surface roughness and depth of cut among cutting forces.  By conducting validation experiments, optimization was seen to be applied successfully.


Sign in / Sign up

Export Citation Format

Share Document