scholarly journals Bioremediation of Soil Contaminated with Diesel using Biopile system

2018 ◽  
Vol 14 (3) ◽  
pp. 48-56
Author(s):  
Noor Mohsen Jabbar ◽  
Estabriq Hasan Kadhim ◽  
Alaa Kareem Mohammed

This study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. The capability of mixed bacterial culture was examined to remediate the diesel-contaminated soil in bio piling system. For fast ex-situ treatment of diesel-contaminated soils, the bio pile system was selected. Two pilot scale bio piles (25 kg soil each) were constructed containing soils contaminated with approximately 2140 mg/kg total petroleum hydrocarbons (TPHs). The amended soil: (contaminated soil with the addition of nutrients and bacterial inoculum), where the soil was mixed with 1.5% of sawdust, then supplied with the necessary nutrients and watered daily to provide conditions promoting microorganism growth. Unamended soil was prepared as a control (contaminated soil without addition).  Both systems were equipped with oxygen to provide aerobic conditions, incubated at atmospheric temperature and weekly sampling within 35 days. Overall 75% of the total petroleum hydrocarbons were removed from the amended soil and 38 % of the control soil at the end of study period. The study concluded that ex-situ experiment (Bio pile) is a preferable, economical, and environmentally friendly procedure, thus representing a good option for the treatment of soil contaminated with diesel.

2018 ◽  
Vol 14 (3) ◽  
pp. 48-56 ◽  
Author(s):  
Noor Mohsen Jabbar ◽  
Estabriq Hasan Kadhim ◽  
Alaa Kareem Mohammed

This study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. The capability of mixed bacterial culture was examined to remediate the diesel-contaminated soil in bio piling system. For fast ex-situ treatment of diesel-contaminated soils, the bio pile system was selected. Two pilot scale bio piles (25 kg soil each) were constructed containing soils contaminated with approximately 2140 mg/kg total petroleum hydrocarbons (TPHs). The amended soil: (contaminated soil with the addition of nutrients and bacterial inoculum), where the soil was mixed with 1.5% of sawdust, then supplied with the necessary nutrients and watered daily to provide conditions promoting microorganism growth. Unamended soil was prepared as a control (contaminated soil without addition).  Both systems were equipped with oxygen to provide aerobic conditions, incubated at atmospheric temperature and weekly sampling within 35 days. Overall 75% of the total petroleum hydrocarbons were removed from the amended soil and 38 % of the control soil at the end of study period. The study concluded that ex-situ experiment (Bio pile) is a preferable, economical, and environmentally friendly procedure, thus representing a good option for the treatment of soil contaminated with diesel.


2019 ◽  
Vol 16 (1(Suppl.)) ◽  
pp. 0185
Author(s):  
Jabbar Et al.

This study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. Four bacterial strains were isolated from diesel contaminated soil samples. The isolates were identified by the Vitek 2 system, as Sphingomonas paucimobilis, Pentoae species, Staphylococcus aureus, and Enterobacter cloacae. The potential of biological surfactant production was tested using the Sigma 703D stand-alone tensiometer showed that these isolates are biological surfactant producers. The better results of the surface tension reduction test were obtained using the mixed bacterial culture which reduced the surface tension of the medium from 66mN/m to 33.89mN/m. For further evidence of the biodegradation effect of these isolates individually and as a mixed culture, which was supported by the use of Gas-Chromatography technology confirming the occurrence of biodegradation. The capability of mixed bacterial culture was examined to remediate the diesel contaminated soil in bio piles system. Two pilot scale bio piles (25 kg soil each) were constructed containing soils contaminated with approximately 2140 mg/kg total petroleum hydrocarbons (TPHs). Both systems were equipped with oxygen to provide aerobic conditions, incubated at ambient temperature and weekly sampling within 35 days (during summer season). Overall 75.71 % of the total petroleum hydrocarbons were removed from the amended soil and 33.18 % of the control soil at the end of study period. The study concluded that the ex-situ bioremediation (bio piles) is a good option for treating the soil contaminated with diesel as economical and environmentally friendly.


2019 ◽  
Vol 16 (1) ◽  
pp. 0185 ◽  
Author(s):  
Jabbar Et al.

This study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. Four bacterial strains were isolated from diesel contaminated soil samples. The isolates were identified by the Vitek 2 system, as Sphingomonas paucimobilis, Pentoae species, Staphylococcus aureus, and Enterobacter cloacae. The potential of biological surfactant production was tested using the Sigma 703D stand-alone tensiometer showed that these isolates are biological surfactant producers. The better results of the surface tension reduction test were obtained using the mixed bacterial culture which reduced the surface tension of the medium from 66mN/m to 33.89mN/m. For further evidence of the biodegradation effect of these isolates individually and as a mixed culture, which was supported by the use of Gas-Chromatography technology confirming the occurrence of biodegradation. The capability of mixed bacterial culture was examined to remediate the diesel contaminated soil in bio piles system. Two pilot scale bio piles (25 kg soil each) were constructed containing soils contaminated with approximately 2140 mg/kg total petroleum hydrocarbons (TPHs). Both systems were equipped with oxygen to provide aerobic conditions, incubated at ambient temperature and weekly sampling within 35 days (during summer season). Overall 75.71 % of the total petroleum hydrocarbons were removed from the amended soil and 33.18 % of the control soil at the end of study period. The study concluded that the ex-situ bioremediation (bio piles) is a good option for treating the soil contaminated with diesel as economical and environmentally friendly.


2001 ◽  
Vol 43 (2) ◽  
pp. 291-295 ◽  
Author(s):  
J. Vouillamoz ◽  
M. W. Milke

The effect of compost on phytoremediation of diesel-contaminated soils was investigated using 130 small (200 g) containers in two screening tests. The experiments were conducted in a controlled environment using ryegrass from seed. Containers were destructively sampled at various times and analyzed for plant mass and total petroleum hydrocarbons. The results indicate that the presence of diesel reduces grass growth, and that compost helps reduced the impact of diesel on grass growth. The addition of compost helps increase diesel loss from the soils both with and without grass, though the addition of grass leads to lower diesel levels compared with controls. A second set of experiments indicates that the compost helps in phytoremediation of diesel-contaminated soil independent of the dilution effect that compost addition has. The results indicate that the compost addition allowed diesel loss down to 200 mg TPH/kg even though the compost would be expected to hold the diesel more tightly in the soil/compost mixture. The simplicity of the screening tests led to difficulties in controlling moisture content and germination rates. The conclusion of the research is that the tilling of compost into soils combined with grass seeding appears to be a valuable option for treating petroleum-contaminated soils.


2009 ◽  
Vol 52 (4) ◽  
pp. 1043-1055 ◽  
Author(s):  
Adriano Pinto Mariano ◽  
Sérgio Henrique Rezende Crivelaro ◽  
Dejanira de Franceschi de Angelis ◽  
Daniel Marcos Bonotto

This work investigated the possibility of using vinasse as an amendment in ex-situ bioremediation processes. Groundwater and soil samples were collected at petrol stations. The soil bioremediation was simulated in Bartha biometer flasks, used to measure the microbial CO2 production, during 48 days, where vinasse was added at a concentration of 33 mL.Kg-1of soil. Biodegradation efficiency was also measured by quantifying the total petroleum hydrocarbons (TPH) by gas chromatography. The groundwater bioremediation was carried out in laboratory experiments simulating aerated (bioreactors) and not aerated (BOD flasks) conditions. In both the cases, the concentration of vinasse was 5 % (v/v) and different physicochemical parameters were evaluated during 20 days. Although an increase in the soil fertility and microbial population were obtained with the vinasse, it demonstrated not to be adequate to enhance the bioremediation efficiency of diesel oil contaminated soils. The addition of the vinasse in the contaminated groundwaters had negative effects on the biodegradation of the hydrocarbons, since vinasse, as a labile carbon source, was preferentially consumed.


2019 ◽  
pp. 101-108
Author(s):  
Lilija Kalediene ◽  
Grazina Giedraityte ◽  
Rapolas Liuzinas

The present study was undertaken to evaluate the efficacy of introduced indigenousbacterial isolates for ex situ bioremediation of fuel oil contaminated soil. For this purposethree hydrocarbon-degrading indigenous bacterial isolates were screened from petroleumoil contaminated soil and repeatedly used for inoculation of fuel oil contaminated soil.The total petroleum hydrocarbons (TPH) content was determined by gravimetric method,Hydrocarbon fractions (alkanes, aromatics, asphaltenes and resins) present in TPH wereobtained by silica gel column chromatography. The study showed that some introducedbacterial isolates effectively adapted to the contaminated soil. The bioaugmentation effectwas calculated to raise the numbers of bacteria by approximately one order of magnitudefrom the indigenous population at the site. Ex situ study showed that the introducedbacterial consortium effectively adapted to the local environment of the soil at thebioremediation site.Our results indicated that disappearance of TPH from inoculated soil samples dependedon the general soil impurity, term of bacterial treatment, level of TPH contamination andindividual microorganism efficacy. With application of bacterial consortium andfertilizers, the TPH level was reduced to 60 - 66% after three months.


2009 ◽  
Vol 89 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Ravanbakhsh Shirdam ◽  
Ali Daryabeigi Zand ◽  
Gholamreza Nabi Bidhendi ◽  
Nasser Mehrdadi

To date, many developing countries such as Iran have almost completely abandoned the idea of decontaminating oil-polluted soils due to the high costs of conventional (physical/chemical) soil remediation methods. Phytoremediation is an emerging green technology that can become a promising solution to the problem of decontaminating hydrocarbon-polluted soils. Screening the capacity of native tolerant plant species to grow on aged, petroleum hydrocarbon-contaminated soils is a key factor for successful phytoremediation. This study investigated the effect of hydrocarbon pollution with an initial concentration of 40 000 ppm on growth characteristics of sorghum (Sorghum bicolor) and common flax (Linum usitatissumum). At the end of the experiment, soil samples in which plant species had grown well were analyzed for total petroleum hydrocarbons (TPHs) removal by GC-FID. Common flax was used for the first time in the history of phytoremediation of oil-contaminated soil. Both species showed promising remediation efficiency in highly contaminated soil; however, petroleum hydrocarbon contamination reduced the growth of the surveyed plants significantly. Sorghum and common flax reduced TPHs concentration by 9500 and 18500 mg kg‑1, respectively, compared with the control treatment.


2021 ◽  
Vol 13 (15) ◽  
pp. 8165
Author(s):  
Valer Micle ◽  
Ioana Monica Sur

The soil samples were taken from the site of a former oil products depot from an industrial area (Romania). The soil samples taken were analyzed from a physical and chemical point of view: texture, pH, soil micronutrient content, metals concentration and petroleum hydrocarbon concentration (PHCs). The soil contaminated with total petroleum hydrocarbon (TPH (4280 mg kg−1) was disposed in the form of a pile (L × W × H: 3000 × 1400 × 500 mm). Experiments on a pilot-scale were conducted over 12 weeks at constant pH (7.5–8), temperature (22–32 °C), nutrient contents C/N/P ratio 100/10/1, soil aeration time (8 h/day) and moisture (30%). Samples were taken every two weeks for the monitoring of the TPH and the microorganisms content. During the experiment, microorganisms were added (Pseudomonas and Bacillus) every two weeks. Results of the analyses regarding the concentration of PHCs were revealed a linear decrease of the concentration of PHCs after only two weeks of treatment. This decrease in concentration was also achieved in the following weeks. Following the analysis performed on the model at the pilot scale regarding the depollution process, it can be concluded that a soil contaminated with petroleum hydrocarbons can be efficiently depolluted by performing an aeration of 8 h/day, adding microorganisms Pseudomonas and Bacillus to ensure the conditions for increasing in the total number of germs (colony forming units–CFU) from 151 × 105 to 213 × 107 CFU g−1 soil, after 12 weeks of soil treatment—the depollution efficiency achieved is 83%.


2021 ◽  
Author(s):  
Valer Micle ◽  
Ioana Sur

Abstract The soil samples were taken from the site of a former oil products depot from an industrial area (Romania). The soil samples taken were analyzed from a physical and chemical point of view: texture, ph, soil micronutrient content, metals concentration and petroleum hydrocarbon concentration (PHCs). The soil contaminated with TPH (4280 mgkg-1) was disposed in the form of a pile (LxWxH:3000x1400x500 mm). Experiments a pilot-scale were conducted over 12 weeks at constant pH (7.5–8), temperature (22–32oC), nutrient contents C/N/P ratio 100:10:1, soil aeration time (8 hour/day) and moisture (30%). Samples were taken every two weeks for the monitoring of the TPH and the microorganisms content. During experiment every two weeks were added microoganisms (Pseudomonas and Bacillus). Results of the analyzes regarding the concentration of PHCs were revelead a linear decrease of the concentration of PHCs after only two weeks of treatment. This decrease in concentration was also achieved in the following weeks. Following the analysis performed on the model at the pilot scale regarding the depollution process, it can be concluded that a soil contaminated with petroleum hydrocarbons can be efficiently depolluted by performing an aeration of 8 h/day, adding microorganisms Pseudomonas and Bacillus to ensure the conditions for increasing in the total number of germs (colony forming units–CFU) from 151x105 to 213x107 CFU/gram of soil, after 12 weeks of soil treatment - the depollution efficiency achieved is 83%.


2020 ◽  
Vol 85 (6) ◽  
pp. 821-830
Author(s):  
Aleksandra Zeradjanin ◽  
Jelena Avdalovic ◽  
Marija Ljesevic ◽  
Olivera Tesic ◽  
Srdjan Miletic ◽  
...  

Environmental pollution is a global problem, while bioremediation technology removes pollutants from the environment using microorganisms. This study was aimed at investigating how a bioremediation process affected soil humification. In soil polluted with petroleum and its derivatives that was submitted to bioremediation, besides the total petroleum hydrocarbons and the number of microorganisms, quantitative and qualitative changes of isolated humic acids were determined during the process. The bioremediation of 150 m3 of polluted soil lasted 150 days. The level of total petroleum hydrocarbons decreased by 86.6 %, while the level of humic acids increased by 26.5 %. The elemental analysis showed the reduction of C and the H/C ratio and the increase of O and the O/C ratio of isolated humic acids during the process. The ratio of absorbencies at 465 and 665 nm also increased. Based on this and the Fourier-transform infrared spectra, it was shown that the humic acids isolated at the end of bioremediation were enriched with oxygen functional groups and aromatic structures. This study provides one of the first insights into the relationship between bioremediation and humification, as well as evidence of how hydrocarbon-degrading microorganisms have a significant influence on changes to humic acid structure during bioremediation.


Sign in / Sign up

Export Citation Format

Share Document