scholarly journals DEVELOPMENT OF FAST-DISSOLVING TABLETS OF AMLODIPINE BESYLATE BY SOLID DISPERSION TECHNOLOGY USING POLOXAMER 407 AND POLOXAMER 188

Author(s):  
Manimaran V ◽  
Damodharan N

Objective: Amlodipine besylate is a calcium channel blocker used in the treatment of hypertension which is practically insoluble in water. The present study aims to design oral fast-release tablets of amlodipine besylate and to optimize the dissolution of the drug by altering the carrier concentration.Materials and Methods: Poloxamer 407 (P407) and poloxamer 188 (P188) were selected as carriers for the preparation of solid dispersion (SD) by the solvent evaporation method with different drug-polymer ratios. The prepared SDs were evaluated for the physical state, drug:carrier interactions by X-ray diffraction (XRD), infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy.Results: From the dissolution studies, it is confirmed that all SDs showed increased dissolution rate when compared to pure amlodipine besylate. Among the two polymers used, P407 was found to be better than P188 in enhancing dissolution efficiency. The tablets were prepared using SD of amlodipine besylate containing P407 as a carrier. The results showed that P407 SD-based tablets gave a significantly higher release of amlodipine besylate when compared with control tablets. The infrared spectral studies showed that there was no significant interaction between amlodipine besylate and its formulation with different polymers used in the preparation of SDs. XRD studies revealed that the degree of crystallinity of amlodipine besylate reduced when the concentration of carriers increased, which reveals that the drug is in amorphous nature.Conclusion: The combination of SD technology and using superdisintegrants in the formulation is a promising approach for preparing efficient, fast-dissolving tablet of poorly water-soluble drugs, viz., amlodipine besylate.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 407
Author(s):  
Sooho Yeo ◽  
Jieun An ◽  
Changhee Park ◽  
Dohyun Kim ◽  
Jaehwi Lee

This study aimed to improve the solubility and dissolution of aprepitant, a drug with poor aqueous solubility, using a phosphatidylcholine (PC)-based solid dispersion system. When fabricating the PC-based solid dispersion, we employed mesoporous microparticles, as an adsorbent, and disintegrants to improve the sticky nature of PC and dissolution of aprepitant, respectively. The solid dispersions were prepared by a solvent evaporation technique and characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry, and X-ray powder diffraction. The FTIR results showed that aprepitant interacted with the PC carrier by both hydrogen bonds and van der Waals forces that can also be observed in the interaction between aprepitant and polymer carriers. The solid dispersions fabricated with only PC were not sufficient to convert the crystallinity of aprepitant to an amorphous state, whereas the formulations that included adsorbent and disintegrant successfully changed that of aprepitant to an amorphous state. Both the solubility and dissolution of aprepitant were considerably enhanced in the PC-based solid dispersions containing adsorbent and disintegrant compared with those of pure aprepitant and polymer-based solid dispersions. Therefore, these results suggest that our PC-based solid dispersion system is a promising alternative to conventional formulations for poorly water-soluble drugs, such as aprepitant.


2012 ◽  
Vol 4 (2) ◽  
pp. 42-47
Author(s):  
Irwin Dewan ◽  
SM Ashraful Islam ◽  
Mohammad Shahriar

The main objective of the current study was to formulate poorly water soluble drug Spirinolactone by using solid dispersion technique in order to achieve a better dissolution rate which would further help in enhancing oral bioavailability. Solid dispersions were prepared using two methods; solvent method and fusion method. Solid dispersion was prepared by using polymers, such as Hydroxy propylymethyl cellulose (HPMC 6cp), Hydroxy propyl cellulose (HPC), Sodium carboxymethylcellulose (Na-CMC), Povidone K12, Povidone K30, Poloxamer 407. Solid dispersions containing Spironolactone with HPC (96.81%), HPMC 6cp (93.05%), Poloxamer 407 (90.84%) and Na-CMC (89.93%) provided higher release rate than the release rate of solid dispersion containing only Spironolactone (35.27%), and Spironolactone with Povidone K12 (76.17%), Povidone K30 (67.92%). So the present study revealed that the solid dispersion may be an ideal means of drug delivery system for poorly water soluble drugs. Further study in this field was required to establish these drug delivery systems so that in future it can be used effectively in commercial basis.DOI: http://dx.doi.org/10.3329/sjps.v4i2.7776S. J. Pharm. Sci. 4(2) 2011: 42-47


INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (01) ◽  
pp. 54-59
Author(s):  
S. S Shelake ◽  
◽  
R. G Gaikwad ◽  
S Patil ◽  
F. I. Mevekari ◽  
...  

Crystalline state compounds are typically dissolution rate limited and dissolution rate is directly proportional to the solubility for BCS class II or class IV compounds. Solid dispersions are one of the most promising strategies to improve the oral bioavailability poorly water soluble drugs. The purpose of this study was to increase solubility of carvedilol by solid dispersion (SDs) technique with Poloxamer (PXM) 407 in aqueous media. The carvedilol- PXM 407 solid dispersion was prepared by solvent evaporation, kneading and melting method. It was characterized by differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), Fourier transformation infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM) and in vitro dissolution studies. The prepared solid dispersion were found to have higher dissolution rates as compared to intact carvedilol. During formulation of solid dispersion crystalline to amorphous transition has been observed.


Author(s):  
MAHAPARALE PR ◽  
THORAT VP

Objective: Leflunomide is Non steroidal Anti-Inflammatory drug, which is poorly water soluble. In present study attempt has been made to prepare and characterize solid dispersions of leflunomide to increase solubility of drug.Method:  In Preparation of solid dispersion of leflunomide different polymer like PEG 4000, PEG 6000, Poloxamer 188 and Poloxamer 407 were used.  Effects of several variables such as type of carrier used, drug: carrier ratios, method of preparation were studied. The evaluation of solid dispersions was done by solubility study, dissolution study and X-ray diffractometry. Result: Improvement in dissolution of drug was observed in all solid dispersions as compared to pure drug alone. Solid dispersions prepared using Poloxamer 188 showed fastest in vitro drug release. Solid dispersions prepared using solvent evaporation method showed relatively faster drug release than melt evaporation method. XRD patterns indicated reduced crystallinity of drug particles, which suggests mechanism of enhanced solubility and dissolution of drug in solid dispersion systems.Conclusion:  A significant result obtained with the study indicated that solid dispersion by solvent evaporation can successfully be further explored and employed to improve solubility and dissolution characteristics of poorly soluble drugs.Keywords: Leflunomide, Solid dispersion, Carrier


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 353
Author(s):  
Hiroshi Ueda ◽  
Yuya Hirakawa ◽  
Hironori Tanaka ◽  
Tetsuya Miyano ◽  
Katsuji Sugita

The transformation of a crystalline drug into an amorphous form is a promising way to enhance the oral bioavailability of poorly water-soluble drugs. Blending of a carrier, such as a hydrophilic polymer, with an amorphous drug is a widely used method to produce a solid dispersion and inhibit crystallization. This study investigates an experimental grade of hydroxypropyl methylcellulose acetate succinate, HPMCAS-MX (MX), as a solid dispersion carrier. Enhancement of thermal stability and reduction of the glass transition temperature (Tg) of MX compared with those of the conventional grade were evaluated through thermogravimetric analysis and differential scanning calorimetry (DSC). The formation of a homogeneous amorphous solid dispersion between MX and indomethacin was confirmed by X-ray powder diffraction analysis, DSC, and Raman mapping. It was observed that 10–30% MX did not act as an anti-plasticizer, but the utilization of >40% MX caused an increase in Tg and reduction of molecular mobility. This could be explained by a change in intermolecular interactions, inferred from infrared spectroscopy combined with principal component analysis. HPMCAS-MX exhibited similar performance to that of conventional-grade, HPMCAS-MG. Although HPMCAS-MX has thermal properties different from those of conventional-grade HPMCAS-MG, it retains its ability as a solid dispersion carrier.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Ali Farmoudeh ◽  
Anahita Rezaeiroshan ◽  
Mohammadreza Abbaspour ◽  
Ali Nokhodchi ◽  
Pedram Ebrahimnejad

Deferasirox (DFX) is an oral iron-chelating agent and classified into class II of the Biopharmaceutics Classification System. Low bioavailability of the drug due to insufficient solubility in physiological fluids is the main drawback of DFX. The idea of the current study was to explore the potential of solid dispersion (SD) as an effective method to improve the dissolution rate of DFX in pellets. The SDs were made by the solvent evaporation technique using polyethylene glycol 4000 (PEG 4000) and polyvinylpyrrolidone K25 with different drug-to-carrier ratios. Then, the dispersion was milled and mixed with other components and the mixture layered on sugar-based cores by pan coating technique. The pellets were evaluated in terms of size distribution, morphology (SEM), and dissolution behaviour. Drug-polymer interactions were studied using differential scanning calorimetry (DSC), X-ray diffraction study (XRD), and Fourier transformation infrared (FTIR) spectroscopy. The pellets coated with SD showed a remarkable rise in the solubility of DFX than that of free drug-loaded pellets. The dispersion with PVP K25 showed a faster dissolution rate as compared to other mixtures. The DSC and XRD analysis indicated that the drug was in the amorphous state when dispersed in the polymer. The FTIR studies demonstrated any ruled out interaction between drug and polymer. The SEM showed smoothness on the surface of the pellets. It is resolved that the SD method considerably enriched the dissolution rate of DFX in pellets, which can also be utilized for other poorly water-soluble drugs.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (06) ◽  
pp. 13-19
Author(s):  
R. O Sonawane ◽  
◽  
S. Nayak ◽  
M. D. Chaudhari ◽  
V. V. Pande

The poorly water soluble drugs tend to have low bioavailability and this can be improved by several methods. Solid dispersion is a promising formulation approach to improve solubility and dissolution and ultimately oral bioavailability of these drugs. The aim of this study was to prepare and characterize solid dispersion of anti-diabetic glimepiride, a BCS class II drug, with the hydrophilic carrier PVP K30 by solvent evaporation and microwave induced fusion methods. Scanning electron microscopy (SEM), X–ray powder diffractometry (XRD) and differential scanning calorimetric (DSC) were used to evaluate the physical state of the drug. The solid dispersions were also evaluated for drug content, solubility and dissolution studies. Solid dispersions prepared by solvent evaporation method were showed maximum enhancement of solubility and dissolution in comparison to that prepared by other method.


Author(s):  
A. N. Patil ◽  
D. M. Shinkar ◽  
R. B. Saudagar

Enhancement of solubility, dissolution rate and bioavailability of the drug is a very challenging task in drug development, nearly 40% of the new chemical entities currently being discovered are poorly water soluble drugs. The solubility behaviour of the drugs remains one of the most challenging aspects in formulation development. This results in important products not reaching the market or not achieving their full potential. Solid dispersion is one of the techniques adopted for the formulation of such drugs and various methods are used for the preparation of solid dispersion. Solid dispersion is generally prepared with a drug which is having poor aqueous solubility and hydrophilic carrier. This article review various methods and concept of solid dispersion, criteria for drug selection, advantage and disadvantage, characterization, and application.


Author(s):  
Samer K. Ali ◽  
Eman B. H. Al-Khedairy

            Atorvastatin (ATR) is poorly soluble anti-hyperlipidemic drug; it belongs to the class II group according to the biopharmaceutical classification system (BCS) with low bioavailability due to its low solubility. Solid dispersions adsorbate is an effective technique for enhancing the solubility and dissolution of poorly soluble drugs.           The present study aims to enhance the solubility and dissolution rate of ATR using solid dispersion adsorption technique in comparison with ordinary solid dispersion. polyethylene glycol 4000 (PEG 4000), polyethylene glycol 6000 (PEG 6000), Poloxamer188 and Poloxamer 407were used as hydrophilic carriers and Aerosil 200, Aerosil 300 and magnesium aluminium silicate (MAS) as adsorbents.            All solid dispersion adsorbate (SDA) formulas  were prepared in ratios of 1:1:1  (drug: carrier: adsorbent) and evaluated for their water solubility, percentage yield, drug content,  , dissolution, crystal structure using  X-ray powder diffraction (XRD) and Differential Scanning Calorimetry (DSC)  studies and Fourier Transform Infrared Spectroscopy (FTIR) for determination the drug-carrier- adsorbate interaction.                The prepared (SDA) showed significant improvement of drug solubility in all prepared formula. Best result was obtained with formula SDA12(ATR :Poloxamer407 : MAS 1:1:1) that showed 8.07 and 5.38  fold increase in solubility compared to  solubility of pure ATR and  solid dispersion(SD4) (Atorvastatin: Poloxamer 407 1:1) respectively due to increased wettability and reduced crystallinity of the drug which leads to improve drug solubility  and  dissolution .


Author(s):  
Sanjoy Kumar Das

Improving oral bioavailability of drugs those given as solid dosage forms remains a challenge for the formulation scientists due to solubility problems. The dissolution rate could be the rate-limiting process in the absorption of a drug from a solid dosage form of relatively insoluble drugs. Therefore increase in dissolution of poorly soluble drugs by solid dispersion technique presents a challenge to the formulation scientists. Solid dispersion techniques have attracted considerable interest of improving the dissolution rate of highly lipophilic drugs thereby improving their bioavailability by reducing drug particle size, improving wettability and forming amorphous particles. The term solid dispersion refers to a group of solid products consisting of at least two different components, generally a hydrophilic inert carrier or matrix and a hydrophobic drug. This article reviews historical background of solid dispersion technology, limitations, classification, and various preparation techniques with its advantages and disadvantages. This review also discusses the recent advances in the field of solid dispersion technology. Based on the existing results and authors’ reflection, this review give rise to reasoning and suggested choices of carrier or matrix and solid dispersion procedure.


Sign in / Sign up

Export Citation Format

Share Document