scholarly journals REGION SPECIFIC WAVELET COMPRESSION FOR 4K SURVEILLANCE IMAGES

2017 ◽  
Vol 10 (13) ◽  
pp. 247
Author(s):  
Ankush Rai ◽  
Jagadeesh Kannan R

For successful transmission of massively sequenced images during 4K surveillance operations large amount of data transfer cost high bandwidth, latency and delay of information transfer. Thus, there lies a need for real-time compression of this image sequences. In this study we present a region specific approach for wavelet based image compression to enable management of huge chunks of information flow by transforming Harr wavelets in hierarchical order.   

2016 ◽  
Vol 11 (1) ◽  
pp. 60-71 ◽  
Author(s):  
Leslie Jamie Cobar ◽  
◽  
Djoko Legono ◽  
Kuniaki Miyamoto ◽  

Indonesia’s Mount Merapi is one of the world’s most active, dangerous volcanoes. Its 2010 eruption – the largest following the 20th century – and succeeding 2011 lahar events killed 389 persons and injured and displaced many more. One way to mitigate a disaster’s impact is the provision of reliable information to the public through a well-established early warning system (EWS). A well-managed information flow network is the key to delivering early warning information, however, there is a lack of understanding on the information transfer down to the citizens. In addition, implementing the 2007 disaster management law may have affected Merapi’s EWS. This study reinvestigates Merapi’s EWS information flow through the construction of an information flow network. A single information flow network was difficult to construct due to the inconsistency of structures per district. Different networks had to be constructed for volcanic eruptions and lahars in each district. Inconsistencies were also found in the roles of the agencies that determine when evacuation orders would be issued. The system also had data transfer gaps and vulnerabilities such as redundancies, mistransfers and bottlenecks. Its use of forecasting information as a basis for decision-making must be reviewed for lahar information flow networks. Improving Merapi’s EWS must involve handling these issues.


2013 ◽  
Vol 347-350 ◽  
pp. 3614-3618
Author(s):  
Hui Zhang ◽  
Yan Nan Zhai ◽  
Yan Kun Tang ◽  
Jing Liu ◽  
Kun Yang

This paper studies the real-time compression and storage technology,extraction and collection contains that Images,Image compression standard,Image storage.The paper use JPEG2000 compression standard.Image via IDE interface to hard disk storage.The results show that non-interest areaimage compression and srorage can remove redundant;reduce the amount of data transfer and increase the transmission speed.


2018 ◽  
Vol 8 (11) ◽  
pp. 2216
Author(s):  
Jiahui Jin ◽  
Qi An ◽  
Wei Zhou ◽  
Jiakai Tang ◽  
Runqun Xiong

Network bandwidth is a scarce resource in big data environments, so data locality is a fundamental problem for data-parallel frameworks such as Hadoop and Spark. This problem is exacerbated in multicore server-based clusters, where multiple tasks running on the same server compete for the server’s network bandwidth. Existing approaches solve this problem by scheduling computational tasks near the input data and considering the server’s free time, data placements, and data transfer costs. However, such approaches usually set identical values for data transfer costs, even though a multicore server’s data transfer cost increases with the number of data-remote tasks. Eventually, this hampers data-processing time, by minimizing it ineffectively. As a solution, we propose DynDL (Dynamic Data Locality), a novel data-locality-aware task-scheduling model that handles dynamic data transfer costs for multicore servers. DynDL offers greater flexibility than existing approaches by using a set of non-decreasing functions to evaluate dynamic data transfer costs. We also propose online and offline algorithms (based on DynDL) that minimize data-processing time and adaptively adjust data locality. Although DynDL is NP-complete (nondeterministic polynomial-complete), we prove that the offline algorithm runs in quadratic time and generates optimal results for DynDL’s specific uses. Using a series of simulations and real-world executions, we show that our algorithms are 30% better than algorithms that do not consider dynamic data transfer costs in terms of data-processing time. Moreover, they can adaptively adjust data localities based on the server’s free time, data placement, and network bandwidth, and schedule tens of thousands of tasks within subseconds or seconds.


2018 ◽  
Vol 115 (50) ◽  
pp. E11817-E11826 ◽  
Author(s):  
Nina Milosavljevic ◽  
Riccardo Storchi ◽  
Cyril G. Eleftheriou ◽  
Andrea Colins ◽  
Rasmus S. Petersen ◽  
...  

Information transfer in the brain relies upon energetically expensive spiking activity of neurons. Rates of information flow should therefore be carefully optimized, but mechanisms to control this parameter are poorly understood. We address this deficit in the visual system, where ambient light (irradiance) is predictive of the amount of information reaching the eye and ask whether a neural measure of irradiance can therefore be used to proactively control information flow along the optic nerve. We first show that firing rates for the retina’s output neurons [retinal ganglion cells (RGCs)] scale with irradiance and are positively correlated with rates of information and the gain of visual responses. Irradiance modulates firing in the absence of any other visual signal confirming that this is a genuine response to changing ambient light. Irradiance-driven changes in firing are observed across the population of RGCs (including in both ON and OFF units) but are disrupted in mice lacking melanopsin [the photopigment of irradiance-coding intrinsically photosensitive RGCs (ipRGCs)] and can be induced under steady light exposure by chemogenetic activation of ipRGCs. Artificially elevating firing by chemogenetic excitation of ipRGCs is sufficient to increase information flow by increasing the gain of visual responses, indicating that enhanced firing is a cause of increased information transfer at higher irradiance. Our results establish a retinal circuitry driving changes in RGC firing as an active response to alterations in ambient light to adjust the amount of visual information transmitted to the brain.


2018 ◽  
Vol 14 (25) ◽  
pp. 1-11
Author(s):  
Satya Prakash Yadav ◽  
Sachin Yadav

Introduction: Image compression is a great instance for operations in the medical domain that leads to better understanding and implementations of treatment, especially in radiology. Discrete wavelet transform (dwt) is used for better and faster implementation of this kind of image fusion.Methodology: To access the great feature of mathematical implementations in the medical domain we use wavelet transform with dwt for image fusion and extraction of features through images.Results: The predicted or expected outcome must help better understanding of any kind of image resolutions and try to compress or fuse the images to decrease the size but not the pixel quality of the image.Conclusions: Implementation of the dwt mathematical approach will help researchers or practitioners in the medical domain to attain better implementation of the image fusion and data transmission, which leads to better treatment procedures and also decreases the data transfer rate as the size will be decreased and data loss will also be manageable.Originality: The idea of using images may decrease the size of the image, which may be useful for reducing bandwidth while transmitting the images. But the thing here is to maintain the same quality while transmitting data and also while compressing the images.Limitations: As this is a new implementation, if we have committed any mistakes in image compression of medical-related information, this may lead to treatment faults for the patient. Image quality must not be reduced with this implementation.


2021 ◽  
Author(s):  
Alicia L. Burns ◽  
Timothy M. Schaerf ◽  
Joseph T. Lizier ◽  
So Kawaguchi ◽  
Martin Cox ◽  
...  

AbstractAntarctic krill swarms are one of the largest known animal aggregations. However, despite being the keystone species of the Southern Ocean, little is known about how swarms are formed and maintained, and we lack a detailed understanding of the local interactions between individuals that provide the basis for these swarms. Here we analyzed the trajectories of captive, wild-caught krill in 3D to determine individual level interaction rules and quantify patterns of information flow. Our results suggest krill operate a novel form of collective organization, with measures of information flow and individual movement adjustments expressed most strongly in the vertical dimension, a finding not seen in other swarming species. In addition, local directional alignment with near neighbors, and strong regulation of both direction and speed relative to the positions of groupmates suggest social factors are vital to the formation and maintenance of swarms. This research represents a first step in understanding the fundamentally important swarming behavior of krill.


2007 ◽  
Vol 19 (2) ◽  
pp. 303-326 ◽  
Author(s):  
Vladislav Volman ◽  
Eshel Ben-Jacob ◽  
Herbert Levine

We present a simple biophysical model for the coupling between synaptic transmission and the local calcium concentration on an enveloping astrocytic domain. This interaction enables the astrocyte to modulate the information flow from presynaptic to postsynaptic cells in a manner dependent on previous activity at this and other nearby synapses. Our model suggests a novel, testable hypothesis for the spike timing statistics measured for rapidly firing cells in culture experiments.


2019 ◽  
Vol 116 (25) ◽  
pp. 12506-12515 ◽  
Author(s):  
Mohammad Bagher Khamechian ◽  
Vladislav Kozyrev ◽  
Stefan Treue ◽  
Moein Esghaei ◽  
Mohammad Reza Daliri

Efficient transfer of sensory information to higher (motor or associative) areas in primate visual cortical areas is crucial for transforming sensory input into behavioral actions. Dynamically increasing the level of coordination between single neurons has been suggested as an important contributor to this efficiency. We propose that differences between the functional coordination in different visual pathways might be used to unambiguously identify the source of input to the higher areas, ensuring a proper routing of the information flow. Here we determined the level of coordination between neurons in area MT in macaque visual cortex in a visual attention task via the strength of synchronization between the neurons’ spike timing relative to the phase of oscillatory activities in local field potentials. In contrast to reports on the ventral visual pathway, we observed the synchrony of spikes only in the range of high gamma (180 to 220 Hz), rather than gamma (40 to 70 Hz) (as reported previously) to predict the animal’s reaction speed. This supports a mechanistic role of the phase of high-gamma oscillatory activity in dynamically modulating the efficiency of neuronal information transfer. In addition, for inputs to higher cortical areas converging from the dorsal and ventral pathway, the distinct frequency bands of these inputs can be leveraged to preserve the identity of the input source. In this way source-specific oscillatory activity in primate cortex can serve to establish and maintain “functionally labeled lines” for dynamically adjusting cortical information transfer and multiplexing converging sensory signals.


2001 ◽  
Vol 02 (03) ◽  
pp. 345-364 ◽  
Author(s):  
DAVID RIDDOCH ◽  
STEVE POPE ◽  
DEREK ROBERTS ◽  
GLENFORD MAPP ◽  
DAVID CLARKE ◽  
...  

Existing user-level network interfaces deliver high bandwidth, low latency performance to applications, but are typically unable to support diverse styles of communication and are unsuitable for use in multiprogrammed environments. Often this is because the network abstraction is presented at too high a level, and support for synchronisation is inflexible. In this paper we present a new primitive for in-band synchronisation: the Tripwire. Tripwires provide a flexible, efficient and scalable means for synchronisation that is orthogonal to data transfer. We describe the implementation of a non-coherent distributed shared memory network interface, with Tripwires for synchronisation. This interface provides a low-level communications model with gigabit class bandwidth and very low overhead and latency. We show how it supports a variety of communication styles, including remote procedure call, message passing and streaming.


Sign in / Sign up

Export Citation Format

Share Document