scholarly journals APPLICATION OF QUALITY BY DESIGN APPROACH FOR THE OPTIMIZATION OF ORODISPERSIBLE FILM FORMULATION

Author(s):  
Ashutosh Gupta ◽  
Jatin Kumar ◽  
Surajpal Verma ◽  
Harmanpreet Singh

Objective: The present study was done to understand the effect of formulation variables on the quality of orodispersible films using quality by design (QbD) approach as mentioned in ICH Q8 (R2) guideline.Methods: A definitive screening design of experiments (DoE) was used to identify and classify the critical formulation variables affecting critical quality attributes (CQA) using 2×2 factorial design. Based on prescreening study, the critical formulation variables, i.e. concentration of film-forming polymer and plasticizers (propylene glycol and polyethylene glycol 400 [PEG 400]) were kept in the range of 1.5–2.5% w/w and 0.5–1% v/v, respectively. A total of eight laboratory-scale formulations were prepared which were provided by DoE using solvent casting method. These batches were evaluated for CQA’s, i.e. mechanical properties such as folding endurance (FD) and disintegration time (DT). Data were analyzed for elucidating interactions between two variables and for providing a predictive model for the process. Finally, the drug was incorporated into optimized batches, and these were evaluated for in vitro dissolution study in simulated saliva (pH 6.8) as well as their mechanical properties.Results: The results suggested that the concentration of film-forming polymer and plasticizer was critical to manufacture orodispersible film with desired CQA, i.e. mechanical property (FD [>150 folds]) and DT (<60 s). The percent drug release, FD, and DT of optimized Formulation I (hydroxypropyl methylcellulose [HPMC] E5 (2%) and propylene glycol [0.15 mL]) were found to be 82.13%±0.260 (in 15 min), 164±2, and 49±1.5 s, respectively, and for optimized Formulation II (HPMC E5 [2%] and PEG 400 [0.15 mL]) was found to be 64.26%±2.026 (in 15 min) and 218±6 and 55±4 s, respectively.Conclusion: From the results, it has been found that the percentage drug release of naratriptan hydrochloride containing propylene glycol as a plasticizer was greater than the formulation containing PEG 400 as plasticizer. From this, we concluded that QbD is very much useful approach to get an optimized formulation in an economic and faster way in comparison to traditional method (hit and trail methods). The futuristic application of the film will involve the management of an acute migraine.

Author(s):  
SHUBHAM BIYANI ◽  
SARANG MALGIRWAR ◽  
RAJESHWAR KSHIRSAGAR ◽  
SAGAR KOTHAWADE

Objective: The intension of the present study includes fabrication and optimization of mouth dissolving film loaded with Chlorothalidone by solvent evaporation techniques using two components and their three levels as multilevel Categoric design. Methods: Major problem associated with the development of film loaded with BCS class II drug is to increase its solubility. Here the Chlorothalidone solubility achieved by co-solvents, such as methanol. After dissolving the drug in co-solvent, this drug solution is poured into an aqueous dispersion of Hydroxypropyl Methylcellulose E5 (HPMC E5) and Polyethylene glycol 400 (PEG 400). The two independent variables selected are factor A (concentration of HPMC E5) and factor B (concentration of PEG 400) was selected on the basis of preliminary trials. The percentage drug release (R1), Disintegration time in sec (R2) and folding endurance (R3) were selected as dependent variables. Here HPMC E5 used as a film former, PEG 400 as plasticizer, mannitol as bulking agent, Sodium starch glycolate as a disintegrating agent, tween 80 as the surfactant, tartaric acid as saliva stimulating agent, sodium saccharin as a sweetener and orange flavour etc. These fabricated films were evaluated for physicochemical properties, disintegration time and In vitro drug release study. Results: The formulation F6 has more favorable responses as per multilevel categoric design is % drug release about 98.95 %, average disintegration time about 24.33 second and folding endurance is 117. Thus formulation F6 was preferred as an optimized formulation. Conclusion: The present formulation delivers medicament accurately with good therapeutic efficiency by oral administration, this mouth dissolving films having a rapid onset of action than conventional tablet formulations.


2015 ◽  
Vol 14 (9) ◽  
pp. 1659-1666
Author(s):  
Ü Gönüllü ◽  
P Gürpınar ◽  
M Üner

Purpose: To formulate double-layer tablets of lornoxicam (LRX) prepared by direct compression method and evaluate their physical and drug release  characteristics.Methods: The outer layer of tablets, composed of microcrystalline cellulose (MCC), starch and lactose, incorporated tan initial or prompt dose of the drug (4 mg) for immediate release. Hydroxypropyl methylcellulose (HPMC), polyvinylpyrrolidone (PVP K90) and carbomer, in varying concentrations, were used to prepare the tablet cores for sustained drug delivery. Weight variation, dimensions, hardness,  tensile strength, friability and disintegration time of the tablets were evaluated. Drug release from double-layer tablets as well as kinetic models of drug release were determined after validating the method used for the quantification of the drug. The analytical method for quantification of LRX by UV spectroscopy was validated and verified for linearity, intra-day and inter-day precision, accuracy, recovery and specifity.Results: Tablet cores based on HPMC and HPMC:PVP K90 mixture displayed better compression and flow properties (good and fair to passable) than those  formulated with PVP K90 and carbomer (poor). Satisfactory results were obtained from all the tablet formulations met compendial requirements. The slowest drug release rate was obtained with tablet cores based on PVP K90 (1.21 mg%.h-1). Drug release followed Higuchi kinetic model and the tablet cores released drug by diffusion/polymer relaxation or diffusion/erosion.Conclusion: Double-layer tablet formulation of lornoxicam based on HPMC or HPMC-PVP mixture is suitable for the treatment of inflammatory and painful conditions.Keywords: Lornoxicam, Controlled release, Double-layer tablets, Non-steroidal antiinflammatory drug, Oral delivery


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Pankaj V. Dangre ◽  
Ram D. Phad ◽  
Sanjay J. Surana ◽  
Shailesh S. Chalikwar

The present work endeavors fabrication of fast dissolving buccal film of clonidine hydrochloride by employing quality by design (QbD) based approach. The total nine formulations were prepared according to formulation by design helped by JMP software 13.2.1. The patient oriented quality target product profiles were earmarked and on that basis critical quality attributes were identified. Preliminary screening studies along with initial risk assessment eased the selection of film-forming polymer (HPMC E 15) and plasticizer (PEG 400) as CMAs for formulation of films. A 32 full factorial plan was utilized for assurance of impact, i.e., HPMC E15 (X1) and PEG 400 (X2), as independent variables (factors) on thickness (mm) (Y1), disintegration time (s) (Y2), folding endurance (Y3), and tensile strength (kg) (Y4). Furthermore, prediction profiler assists in predicting composition of best formulation encompassing desired targeted response. The optimized formulation (F6) showed fast drug dissolution (>90%) within 8 min, and solid state characterization by DSC, XRD revealed excellent film characteristics. In a nutshell, the fast dissolving buccal film for clonidine hydrochloride was successfully developed assisted by QbD approach with markedly improved biopharmaceutical performance as well as patient compliance.


Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
P Karade

The aim of this study was to design orally disintegrating tablet (ODT) of Lamotrigine. It is an Antiepileptic drug which is widely used in epilepsy. It is also used in simple and complex partial seizures and secondary generalized tonic-clonic seizures. It is poorly water soluble drug (0.46 mg/ml). Thus, an attempt was made to enhance the water solubility by complexation with β-cyclodextrin (1:1 molar ratios). The orally disintegrating tablet of lamotrigine was prepared by direct compression method using different concentration of superdisintegrants such as Sodium starch glycollate, croscarmellose sodium by sublimating agent such as camphor. The formulations were evaluated for weight variation, hardness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies. The prepared tablets were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The disintegration time for the complexed tablets prepared by different concentration of superdisintegrants was found to be in range of 32.54 ± 0.50 to 55.12 ± 0.57 sec and wetting time of the formulations was found to be in range of 28.47 ± 0.67 to 52.19 ± 0.72 sec. All the formulation showed almost 100 percent of drug release within 15 min. Among all the formulation F6 and F7 prepared with 18% croscarmellose sodium and camphor shows faster drug release, respectively 10 min, F6 gives good result for disintegration time, drug release, wetting time and friability. Further formulations were subjected to stability testing for 30 days at temperature of 40 ± 5 ºC/75 ± 5 %RH. Tablets showed no appreciable changes with respect to physical appearance, drug content, disintegration time and dissolution profiles. Results were statistically analyzed by one-way ANOVA at a p < 0.05. It was found that, the data at any point of time are significant at p < 0.05.


2017 ◽  
Vol 9 (3) ◽  
pp. 55
Author(s):  
Manjunath P. N. ◽  
Satish C. S. ◽  
Vasanti S. ◽  
Preetham A. C. ◽  
Naidu Ras

Objective: The aim of this study was to formulate and evaluate gastro retentive drug delivery system (GRRDS) using an effervescent approach for simvastatin.Methods: Floating tablets were prepared using directly compressible polymers hydroxypropyl methylcellulose (HPMC) K100M, HPMC K4M and carboxymethylcellulose sodium (NaCMC). The prepared tablets were subjected to pre-formulation studies like Compressibility index, Hausner ratio and post compression parameters like buoyancy/floating test and In vitro dissolution study.Results: Drug-excipient compatibility studies performed with the help of FTIR instrument indicated that there were no interactions. The DSC thermogram of the formulations revealed that crystalline form of simvastatin existed in the formulation which was confirmed by X-ray powder diffraction. Dissolution studies indicated that there was a decrease in the drug release with an increase in the polymer viscosity. The tablets prepared with low-viscosity grade HPMC K4M exhibited short Buoyancy Lag Time and floated for a longer duration as compared with formulations containing high viscosity grade HPMC K100M. The ‘n’ value for dissolution studies for all the formulations was found to be in the range of 0.647 to 0.975 indicating non-Fickian or anomalous drug transport. Conclusion: The drug release rate and floating duration of tablets depended on the nature of the polymer and other added excipients. The release rate of the drug can be optimized by using different ratios of polymers and other excipients. The formulation F8 achieved the optimized batch and complied with all the properties of the tablets.


Author(s):  
Asfiya Fatima ◽  
Mamatha Tirunagari ◽  
Divya Theja Chilekampalli

The main objective of the present study was to prepare and evaluate the instant release oral thin films of Flunarizine, in order to enhance the bioavailability of the drug and to provide rapid onset of action thereby improving patient compliance. The instant release oral thin films of Flunarizine were prepared by solvent casting method using film forming polymer like Hydroxypropyl Methylcellulose E-15. The film was evaluated for various physicochemical parameters that include thickness, weight variation, folding endurance, tensile strength, drug content and in vitro drug release studies. No differences were observed in in vitro dissolution of drug from the formulated film F1-F9 as the film instantly gets wet by dissolution medium. The drug release for F5 formulations was about 98.1%. The accelerated stability studies for the optimized film formulations F5 were performed that indicates that the formulated instant release oral thin films were unaffected after initial and 3 months storage under accelerated conditions.


2021 ◽  
Vol 20 (1) ◽  
pp. 19-29
Author(s):  
Nilima A Thombre ◽  
Pradeep S Ahire ◽  
Sanjay J Kshirsagar

In the current investigations, mouth dissolving tablets (MDT) were developed by applying quality by design (QbD) approach. Direct compression method was applied for the preparation of MDT containing aspirin using 32 factorial design with quantity of drug, microcrystalline cellulose (MCC) and crosscarmellose sodium (CCS) as dependant variables. MCC and CCS were used as superdisintegrants. Sodium stearyl fumarate was used as lubricant. Developed MDT were evaluated for characteristics like hardness, friability, disintegration time (DT) and in vitro drug release . Design Expert 11.0 described adequately impact of selected variables (MCC and CCS) at various levels for response under study (DT and friability). The optimized batch showed disintegration time of 15-28 secs, friability within 1% and in vitro drug release of 75-98% after 30 mins, respectively. The present study of experimental design revealed that MCC and CCS are fruitful at low concentration to develop the optimized formulation. As per the results obtained from the experiments, it can be concluded that QbD is an effective and efficient approach for the development of quality into MDT with the application of QTPP, risk assessment and critical quality attributes (CQA). Dhaka Univ. J. Pharm. Sci. 20(1): 19-29, 2021 (June)


2019 ◽  
Vol 9 (4) ◽  
pp. 574-578
Author(s):  
Mohammad Faizan Mohammad Gufran ◽  
Sailesh Kumar Ghatuary ◽  
Reena Shende ◽  
Prabhat Kumar Jain ◽  
Geeta Parkhe

Formulation development is an important part of drug design and development. Bioavailability and bioequivalence are totally dependent on formulation development. Now-a-days formulation development is done by following QbD (Quality by Design).The aim of present study is to formulate Gemfibrozil (Gem) sustained release (SR) and immediate release (IR) bilayer tablet by different concentration of Hydroxypropyl methylcellulose (HPMC) and HPMC K 100 M to control the release pattern. The sustained release layer of Gem was prepared by using different grades of HPMC like, HPMC K-15, HPMC K-4 along with other excipients by direct compression technique. The immediate release layer of Gem was prepared by Cross carmellose sodium, Crospovidone and Sodium starch glycolate by direct compression technique. The powders were evaluated for their flow properties and the finished tablets were evaluated for their physical parameters. The both immediate release and sustained release layers of Gem were characterized by FT-IR and in vitro dissolution studies. The drug release study of Gem was evaluated using USP-II paddle type dissolution apparatus. The release rate of Gem in immediate release layer was studied for 15 min in 0.1 N HCL media and that of Gem in sustained release layer was studied for 12 h in 0.1 N HCL. From the nine batches F6 batch showed good release behaviour 99.85% of drug is released over 12 hours. Gem belongs to BCS Class II (log P 3.6) with poor solubility and high permeability resulting in limited and variable bioavailability. Total four trial batches of each drug have been manufactured to optimize and develop a robust and stable formulation, the stability studies of the products also comply with ICH guideline. Keywords: Bilayer floating tablets, Gemfibrozil, Biphasic drug release, HPMC K 15.


Author(s):  
Hemant A. Deokule ◽  
Smita S. Pimple ◽  
Praveen D. Chaudhari ◽  
Ajit S. Kulkarni

Fast dissolving strips are used as novel approaches, as it dissolves rapidly in mouth and directly reaches the systemic circulation. In present research work, an attempt has been made to prepare mouth dissolving strips of Metoclopramide hydrochloride by using a novel film former Pullulan by solvent casting method. A33 full factorial design was utilized for the optimization of the effect of independent variables such as the amount of Pullulan, amount of PEF 400, amount of SSG on mechanical properties, and % drug release of strips. The drug compatibility studies using FTIR and DSC studies formulated strips were characterized for their physicochemical parameter like weight variation, visual appearance, folding endurance, thickness, disintegration time, drug content, and in vitro dissolution studies. FTIR and DSC studies revealed that the polymer is compatible with the drug. It was found that the optimum levels of the responses for a fast release strip could be obtained at low levels of Pullulan, PEG400, and SSG. The prepared strip was clear transparent and had a smooth surface. The surface pH was found 4.8 to 5.2 be in the range of to which is close to salivary pH, which indicates that strips may have less potential to irritate the oral mucosa, thereby they are comfortable. The drug release was found to be between 90.94 to 100.5% in 2 min. The in-vitro disintegration time of strips prepared with Pullulan was in the range of 19 to 57 sec. As the concentration of SSG increases the decrease in the disintegration time of strips a decrease. The dissolution rate increased with an increase in the concentration of SSG. Hence, it can be inferred that the fast dissolving oral strips of Metoclopramide hydrochloride may produce rapid action thereby improving bioavailability and enhance the absorption by avoiding the first-pass effect.


Author(s):  
SUWARNA SURESH BOBDE ◽  
HEMRAJ M. TANK

Objective: The present study aims to prepare a mouth dissolving film of ramosetron hydrochloride to provide relief to cancer patients suffering from nausea and vomiting. Methods: Mouth dissolving film of ramosetron hydrochloride were prepared and optimized using three levels two factor design. The films were prepared using the solvent casting technique. The effect of formulation variables such as the concentration of HPMC E15, and honey on disintegration time, tensile strength and drug release from the film were studied. The films were evaluated for weight, thickness, folding endurance, tensile strength, percent elongation, surface pH, disintegration time and drug release. Results: All the films were found to be transparent, non-sticky and easily peelable. The concentration of HPMC E 15 and Honey was found to have a significant effect on disintegration time and drug release of the mouth dissolving film. Formulation R1 was found to the best formulation with 104.21 % release in 9 min and disintegration time of 57 seconds. Conclusion: It can be concluded that the developed mouth dissolving film could serve as an effective, convenient alternative to prevent nausea and vomiting in cancer patients of any age group.


Sign in / Sign up

Export Citation Format

Share Document