scholarly journals ENCAPSULATION OF IBUPROFEN INTO SOLID LIPID NANOPARTICLES FOR CONTROLLED AND SUSTAINED RELEASE USING EMULSIFICATION SOLVENT EVAPORATION TECHNIQUE

Author(s):  
WESLEY N OMWOYO ◽  
MAKWENA J MOLOTO

Objective: The objective of the study was to encapsulate ibuprofen (IBU) into solid lipid nanoparticles (SLNs) for enhanced dissolution and achieving a sustained and controlled release of the drug from the nanocarrier. Methods: IBU loaded nanoparticles were prepared by emulsification solvent evaporation technique and characterized by Fourier Transform Infrared spectroscopy, Thermogravimetric Analysis, X-ray diffraction (XRD), and transmission electron microscopy. Release kinetics on the drug-loaded nanoparticles was carried out in phosphate buffer pH 6.8 using pharma test dissolution apparatus adopting shaking basket method at 37°C. Results: The optimized IBU-loaded SLNs had a particle size of 76.40 nm, polydispersity index of 0.275, and zeta potential of −41.3 mV. The encapsulation efficiency (EE) and DL were 99.73% and 2.31%, respectively. The Fourier transform infrared spectroscopy (FTIR) spectra confirmed successful encapsulation of the drug inside the nanocarrier as only peaks responsible for the emulsifier and the binder could be identified. This corroborated well with XRD spectra which showed a completely amorphous state of the drug-loaded nanoparticles as compared to the crystalline nature of the pure drug. The IBU-SLNs showed a release profile of up to 8 h which is a great improvement from other reported works. The drug release pattern of IBU-SLNs was best fitted with Higuchi square root model and followed the Higuchi drug release kinetics. Korsmeyer-Peppas model confirmed a non-Fickian diffusion model for the release of the drug from the matrix system. Conclusion: IBU-loaded SLNs were successfully prepared which had a sustained and controlled release. It was observed that the release of the drug from the matrix was diffusion controlled and time dependent.

Author(s):  
Koyel Kar ◽  
R. N. Pal ◽  
N. N. Bala

Objective: The major objective of the research work was to design, characterise and evaluate controlled release microspheres of ropinirole hydrochloride by using non-aqueous solvent evaporation technique to facilitate the delivery of the drug at a predetermined rate for a specific period of time.Methods: Ropinirole hydrochloride microspheres were prepared by using different low-density polymers such as eudragit RL 100, eudragit RS 100 and ethylcellulose either alone or in combination with the help of non-aqueous solvent evaporation technique. All the formulated microparticles were subjected to various evaluation parameters such as particle size analysis, micrometric properties, drug entrapment efficiency, percentage drug loading, percentage yield and in vitro drug release study. The compatibility of the drug and polymers was confirmed by physical compatibility study, fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and x-ray diffraction study (XRD). The formation of the most optimized batch of the microsphere (F12) was confirmed by scanning electron microscopy (SEM), DSC, FTIR, and XRD. In vitro drug release study and in vitro drug release kinetics study of the formulated microspheres were also carried out.Results: Drug-polymer compatibility studies performed with the help of FTIR and DSC indicated that there were no interactions. Results revealed that non-aqueous solvent evaporation technique was a suitable technique for the preparation of microspheres as most of the formulations were discrete, free-flowing and spherical in shape with a good yield of 55.67% to 80.09%, percentage drug loading of 35.52% to 94.50% and percentage drug entrapment efficiency of 36.24% to 95.07%. Different drug-polymer ratios, as well as the combination of polymers, played a significant role in the variation of over-all characteristics of formulations. Based on the data of various evaluation parameters such as particle size analysis, percentage drug loading, percentage drug entrapment, percentage yield, rheological studies and in vitro drug release characteristics, formulation F12 was found to fulfil the criteria of ideal controlled release drug delivery system. F12 showed controlled release till the 14th hour (97.99%) and its in vitro release kinetics was best explained by zero-order kinetics and followed Korsemeyer-Pappas model (Non-Fickian mechanism). SEM of F12 revealed the formation of spherical structures. The FTIR study of F12 confirmed the stable nature of ropinirole in the drug-loaded microspheres. DSC and XRD patterns showed that ropinirole hydrochloride was dispersed at the molecular level in the polymer matrix.Conclusion: The controlled release microparticles were successfully prepared and from this study, it was concluded that the developed microspheres of ropinirole hydrochloride can be used for controlled drug release to improve the bioavailability and patient compliance and to maintain a constant drug level in the blood target tissue by releasing the drug in zero order pattern.


Author(s):  
Mohammad Salim Hossain ◽  
Reza-ul Jalil ◽  
Selim Reza ◽  
Mohiuddin Abdul Quadir ◽  
CF Hossain

Efficiency of kollicoat EMM 30 D and SR 30D as matrix forming material was investigated. It was found that, theophylline loaded granules prepared with these two polymers could not sustain drug release for a significant period of time. However, compression of these granules into tablets retarded drug release for up to 8 hours. Release was faster from EMM 30D polymeric system than that from SR 30D matrix. Effects of fillers and rate modifiers on drug liberation have been assessed. Incorporation of Avicel RC 591 and starch caused substantial release of theophylline from both the polymeric systems. Avicel PH 101 intensified the retardation effect of both EMM 30D and SR 30D on theophylline release. HPMC 50 cps, when added to the matrix, caused the release of theophylline to follow near zero order pattern. Increasing the content of HPMC in both EMM 30D and SR 30D compressed tablets decreased the rate and extent of theophylline release. In the presence of excipients, no significant differences between rate and extent of drug release from EMM 30D and SR 30D systems were found. Biexponential equation was applied to explore and explain drug release kinetics. It was found that drug release followed Fickian or case I kinetics from EMM 30D compressed tablet while anomalous or non-fickian kinetics of drug release was observed for SR 30D system. Key words: Kolliocoat SR 30D, Kollicoat EMM 30D, Theophylline, Matrix system, Controlled release Dhaka Univ. J. Pharm. Sci. Vol.4(1) 2005 The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


2017 ◽  
Vol 4 (1) ◽  
pp. 17-29 ◽  
Author(s):  
Sukhwinder Singh ◽  
Sukhmeet Singh Kamal ◽  
Amit Sharma ◽  
Daljit Kaur ◽  
Manoj Kumar Katual ◽  
...  

Objectives: The present study aims on preparing Levosulpiride loaded solid lipid nanoparticles (SLNs) to reduce the dose, frequency of dosing, reduce side effects and to increase the bioavailable fraction of drug (<30% orally in general). Methods: Levosulpiride was characterized by preformulation studies like physical appearance, melting point, assay, calibration curve, FTIR analysis and DSC analysis. The calibration curve of the drug was prepared in pH 6.8 phosphate buffer. Two lipids (Stearic acid and Palmitic acid) were used as lipid phase to prepare SLNs. Factorial design (23) was applied to formulate 16 formulations (8 for each lipid i.e. SF1-SF8 and PF1-PF8). Levosulpiride SLNs were prepared by solvent evaporation method followed by homogenization. Results: The optimized formulations were characterized by particle size analysis, zeta potential analysis, in vitro drug release and drug release kinetics. Drug-excipient interaction in optimized formulation was characterized by FTIR, DSC and TEM analysis. Conclusion: On the basis of evaluation parameters, the formulation SF1 (containing Stearic acid) and PF1 (containing Palimitic acid) found to be better formulations amongst their groups with a controlled drug release after a period of 24 hrs.


2019 ◽  
Author(s):  
Chem Int

This work focus on the study and the elaboration of microspheres based on amoxicillin (AMO), those microspheres were prepared through the oil/water emulsion evaporation technique. Polybutylene succinate (PBS) and Poly(methylmethacrylate) (PMMA) polymeric matrix were used with Tween 80 (T80) and Polyvinyl alcohol (PVA) as emulsifiers. These polymeric systems were analyzed by SEM, FTIR and optical microscopy. The conditions of the microspheres forming were varied and the preparation was performed by changing different parameters such as: the nature of the polymer, the stirring speed, organic solvent, surfactant nature, and concentration, which allows the study of their effect on encapsulation efficiency and drug release kinetics. These parameters affect strongly the size of microspheres, the drug content and the drug release, the latter is settled in an artificially reconstituted media of pH = 1.2 transcribed from the stomachal medium.


2018 ◽  
Vol 14 (4) ◽  
pp. 319-328 ◽  
Author(s):  
Babita Sarangi ◽  
Utpal Jana ◽  
Guru Prasad Mohanta ◽  
Prabal Kumar Manna

Author(s):  
Pravin Patil ◽  
Anil Sharma ◽  
Subhash Dadarwal ◽  
Vijay Sharma

The objective of present investigation was to enhance brain penetration of Lamivudine, one of the most widely used drugs for the treatment of AIDS. This was achieved through incorporating the drug into solid lipid nanoparticles (SLN) prepared by using emulsion solvent diffusion technique. The formulations were characterized for surface morphology, size and size distribution, percent drug entrapment and drug release. The optimum rotation speed, resulting into better drug entrapment and percent yield, was in the range of 1000-1250 r/min. In vitro cumulative % drug release from optimized SLN formulation was found 40-50 % in PBS (pH-7.4) and SGF (pH-1.2) respectively for 10 h. After 24 h more than 65 % of the drug was released from all formulations in both mediums meeting the requirement for drug delivery for prolong period of time.


Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


Author(s):  
Rajesh Dubey ◽  
Udaya K. Chowdary ◽  
Venkateswarlu V.

A controlled release formulation of metoclopramide was developed using a combination of hypromellose (HPMC) and hydrogenated castor oil (HCO). Developed formulations released the drug over 20 hr with release kinetics following Higuchi model. Compared to HCO, HPMC showed significantly higher influence in controlling the drug release at initial as well as later phase. The difference in the influence can be explained by the different swelling and erosion behaviour of the polymers. Effect of the polymers on release was optimized using a face-centered central composite design to generate a predictable design space. Statistical analysis of the drug release at various levels indicated a linear effect of the polymers’ levels on the drug release. The release profile of formulations containing the polymer levels at extremes of their ranges in design space was found to be similar to the predicted release profile


2020 ◽  
Vol 57 ◽  
pp. 101621 ◽  
Author(s):  
Zeynab Ahmadifard ◽  
Ahmad Ahmeda ◽  
Mahsa Rasekhian ◽  
Sajad Moradi ◽  
Elham Arkan

1970 ◽  
Vol 8 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Mohammad Nezab Uddin ◽  
Ishtiaq Ahmed ◽  
Monzurul Amin Roni ◽  
Muhammad Rashedul Islam ◽  
Mohammad Habibur Rahman ◽  
...  

The objective of this study was to design oral sustained release matrix tablets of Ranolazine usinghydroxypropyl methylcellulose (HPMC) as the retardant polymer and to study the effect of formulation factors suchas polymer proportion and polymer viscosity on the release of drug. In vitro release studies were performed usingUSP type II apparatus (paddle method) in 900 mL of 0.1N HCl at 100 rpm for 12 hours. The release kinetics wasanalyzed using the zero-order, first order, Higuchi and Korsmeyer-Peppas equations to explore and explain themechanism of drug release from the matrix tablets. In vitro release studies revealed that the release rate decreasedwith increase in polymer proportion and viscosity grade. Mathematical analysis of the release kinetics indicated thatthe nature of drug release from the matrix tablets was dependent on drug diffusion and polymer relaxation andtherefore followed non-Fickian or anomalous release. The developed controlled release matrix tablets of Ranolazineprepared with high viscosity HPMC extended release up to 12 hours.Key words: Ranolazine; Sustained release; Methocel E50 Premium LV; Methocel K100LV CR; Methocel K4M CR;Methocel K15M CR.DOI: 10.3329/dujps.v8i1.5333Dhaka Univ. J. Pharm. Sci. 8(1): 31-38, 2009 (June)


Sign in / Sign up

Export Citation Format

Share Document