scholarly journals FORMULATION AND EVALUATION OF EXTENDED RELEASE PELLETS OF PIOGLITAZONE HYDROCHLORIDE USING NATURAL AND SYNTHETIC POLYMERS BY FLUIDIZED BED COATING TECHNIQUE

Author(s):  
GOWTHAMI B ◽  
NIHITHA S ◽  
SANTHI PRIYA NAGAM ◽  
RAMA RAO NADENDLA

Objective: The objective of the current work was to develop Pioglitazone hydrochloride (HCl) pellets coated with natural polymer extracted from peas gum and also to compare the drug release profile with coatings containing semi-synthetic and synthetic polymers. Methods: Fluidized bed coating technique was used to develop pellets. A 22 factorial design was employed to study the effect of independent variables (inlet air temperature and spray rate), on dependent variables (percentage entrapment efficiency, percentage friability, and average particle size). Optimization was done by fitting experimental data to the software program. Obtained pellets were subjected to different evaluation parameters which are critical in the development of the dosage form. An in vitro lag phase study was carried out for all batches in simulated gastric fluid (0.1N HCl) for 5 h and in vitro drug release study was carried out for optimized batch (E-2 and P-3) in simulated intestinal fluid (pH 7.4 phosphate buffer). Results: The optimized batches E-2 and P-3 showed satisfactory percentage entrapment efficiency of 92.66±1.52, percentage friability of 0.57±0.03, and average particle size of 1424±16 μm. All batches maintained lag phase for 5 h in 0.1N HCl. An optimized batch of two different sizes exhibited a burst release within 30 min in a simulated intestinal fluid with no significant difference in release rate constant (*p>0.05) and followed first-order kinetics. Conclusion: Thus, Pioglitazone HCl pulsatile pellets were successfully developed for treating diabetes mellitus by fluidized bed coating technique employing factorial design.

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Yan Jiao ◽  
He Han ◽  
Ying Chang ◽  
Dajing Li ◽  
Asad Riaz

Zein is one of the popular bioactive carriers and play critical roles in the promotion of stability, absorption, and utilization of the nutrients and bioactive ingredients. The application of zein delivery systems for the encapsulation of bioactive ingredients has recently gained increasing interest. The aim of this work was to modify zein by pepsin and prepare the lutein-loaded zein nanoparticle (LZN) and the lutein-loaded zein hydrolysate nanoparticle (LZHN), respectively. The effects of zein hydrolysation on entrapment efficiency and in vitro digestion stability of lutein were also evaluated in this study. Hydrolysation of zein by the pepsin has important effects on lutein embedding. The optimal hydrolysis conditions, including the pepsin concentration (1.5%), temperature (55°C), and time (4 h), enhanced the entrapment efficiency (EE) of lutein by 93.82 ± 2.82% as compared to 85.18 ± 3.28% of the untreated zein, respectively. In contrast to LZN, LZHN had better structural characteristics, the average particle size decreases from 158.40 ± 3.22 nm to 112.2 ± 1.56 nm, and LZHN showed better dispersivity and zeta potential. The stability and release assays in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) showed that hydrolyzed zein nanocarriers by pepsin improved the digestion stability and promoted the release of lutein under gastrointestinal digestive conditions. These results suggest that hydrolyzed zein with pepsin may act as an effective carrier for lutein delivery and shows many potential advantages compared with the zein.


2017 ◽  
Vol 6 (6) ◽  
pp. 517-526 ◽  
Author(s):  
Permender Rathee ◽  
Anjoo Kamboj ◽  
Shabir Sidhu

AbstractBackground:Piperine helps in the improvement of bioavailability through pharmacokinetic interaction by modulating metabolism when administered with other drugs. Nisoldipine is a substrate for cytochrome P4503A4 enzymes. The study was undertaken to assess the influence of piperine on the pharmacokinetics and pharmacodynamics of nisoldipine nanoparticles in rats.Methods:Optimization studies of nanoparticles were performed using Taguchi L9 orthogonal array, and the nanoparticles were formulated by the precipitation method. The influence of piperine and nanoparticles was evaluated by means of in vivo kinetic and dynamic studies by oral administration in rats.Results:The entrapment efficiency, drug loading, ζ potential, and average particle size of optimized nisoldipine-piperine nanoparticles was 89.77±1.06%, 13.6±0.56%, −26.5 mV, and 132±7.21 nm, respectively. The in vitro release in 0.1 n HCl and 6.8 pH phosphate buffer was 96.9±0.48% and 98.3±0.26%, respectively. Pharmacokinetic studies showed a 4.9-fold increase in oral bioavailability and a >28.376±1.32% reduction in systemic blood pressure by using nanoparticles as compared to control (nisoldipine suspension) in Wistar rats.Conclusion:The results revealed that piperine being an inhibitor of cytochrome P4503A4 enzymes enhanced the bioavailability of nisoldipine by 4.9-fold in nanoparticles.


Author(s):  
ARTI MAJUMDAR ◽  
NIDHI DUBEY ◽  
NITIN DUBEY

Objective: The aim of the present study is to develop docetaxel-loaded nano liquid crystals (NLCs) to enhanced and effective delivery of the drug to the skin cancer. Methods: NLCs bearing docetaxel were prepared by an emulsification solvent diffusion method. The formulated NLCs were characterized for average particle size, polydispersity index (PDI) Zeta potential, entrapment efficiency and in vitro drug release study. The prepared formulations were studied for it's in vitro cell line and cell uptake study. Results: It was revealed that the average size of NLCs was found 178.3±5.07, PDI was 0.189, percent entrapment efficiency was found 71.3±2.49 and Zeta potential was found-17.3±2.4. In vitro release determined by Franz diffusion cell was found 61.6±3.2% after 72 hr. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay shows that Docetaxel loaded NLCs were giving more cytotoxicity as compared to the plain drug. The cell uptake study was found enhanced uptake of fluorescein isothiocyanate (FITC) loaded NLCs in comparison to plain FITC. Docetaxel and docetaxel-loaded NLCs showed 28.3±0.3 and 39.3±1.3 growth inhibition respectively after 48h upon incubation at 0.5 µg/ml concentration (p<0.05). Conclusion: The result of the studies was concluded that NLCs can be used as impending drug delivery system which may enhance the drug uptake and maintain the drug level for longer period of time and it is potential carrier system which can be used for the treatment of skin diseases like cancer.


Author(s):  
Nilesh S. Kulkarni ◽  
Mukta A. Kulkarni ◽  
Rahul H. Khiste ◽  
Mohini C. Upadhye ◽  
Shashikant N. Dhole

Aim: The present investigation is to formulate and evaluate gastroretentive floating microspheres for sumatriptan succinate. Gastric retention is widely used approach to retain dosage form in stomach and to enhance absorption of drugs. Methods: The gastroretentive floating microspheres was prepared by two different techniques as solvent evaporation and W/O/W multiple emulsion technique. Ethyl cellulose, HPMC K4M polymer and mucilage extracted from Vigna Mungo in various proportions were used for formulation of microspheres. Combination of ethyl acetate and acetone in different proportion was used as organic phase and the microspheres were characterized for particle size, shape, morphology, percentage yield, entrapment efficiency, drug loading, In-Vitro Floating/Buoyancy study, In-vitro Floating/Buoyancy study and release kinetics. Results: The average particle size of all batches was found in the range 100 to 210 μm and the entrapment efficiency of all formulations was found in the range of 17.46 % to 59.28 %.Total floating time for Sumatriptan succinate floating microspheres was observed more than 12 h. The In-Vitro drug release study was performed for all formulations showed drug release in controlled manner. Conclusion: The particle size was increased with increased polymer concentration and it showed that polymer concentration has an impact on the entrapment efficiency. Ethyl cellulose microspheres showed more entrapment and sustained delivery of sumatriptan Succinate than microspheres prepared by combination of Ethyl cellulose: HPMC K4M and Ethyl cellulose: Vigna mungo mucilage.


2020 ◽  
Vol 17 (2) ◽  
pp. 159-173
Author(s):  
Qinqin Liu ◽  
Hongmei Xia ◽  
Yinxiang Xu ◽  
Yongfeng Cheng ◽  
Zhiqing Cheng

Objective: Paeonol is a phenolic compounce that is volatile. In order to decrease its volatility and achieve controlled release, paeonol-loaded liposome in carbomer hydrogel was prepared by coating with soybean phospholipid via ethanol injection method and then added into the carbomer hydrogel. Methods: The quality of paeonol-loaded liposome in carbomer hydrogel was evaluated by the degree of roundness, particle size distribution, zeta potential, entrapment efficiency (filtration method and chitosan neutralization method), viscosity, infrared spectrum, etc. Furthermore, the diffusion from paeonolloaded liposome in hydrogel was studied in vitro. Results: The results showed that the average particle size of paeonol-loaded liposome was about 401 nm, the potential was -17.8 mV, and the entrapment efficiency was above 45%. The viscosity of paeonol- loaded liposome in hydrogel was 23.972×10-3 Pa*s, and the diffusion rate from paeonol-loaded liposome in hydrogel in vitro was obviously slower than that from the other paeonol preparations. Conclusion: The conclusions could be drawn that paeonol-loaded liposome in hydrogel was a kind of novel preparation, and its diffusion in vitro had obvious controlled-release characteristics, which further proved that it might improve the bioavailability of paeonol.


Author(s):  
Kiranmai Mandava ◽  
Kruthika Lalit ◽  
Venu Madhav Katla

The objective of the study was to develop silver nanoparticles loaded with Ketoprofen (Ag-KP) for increasing the drug solubility and thereby its bioavailability. Ag-KP were prepared by the solvent evaporation method using β-Cyclodextrin as a biodegradable polymer. Different formulations of Ag-KP were characterized for the drug entrapment efficiency, Fourier Transform Infrared Spectroscopy (FTIR), particle size analysis, X-ray diffraction studies (XRD), scanning electron microscopy (SEM) and  in-vitro dissolution studies. The optimized formulation (F6) has shown an average particle size of 167.8 ± 3.46 nm,zeta potential of -23.7 ± 1.46 mV. FTIR revealed that the drug showed good excipient compatibility. XRD studies showed that the drug has changed from crystalline to amorphous state. In all formulations, F6 formulation (optimized) exhibited high drug entrapment efficiency (∼93%). SEM studies indicated the shape of Ag-KP was roughly spherical with smooth surface. In vitro dissolution studies showed that Ag-KP from F6 formulation was 94.3 ± 4.9% but for the marketed formulation, it is only 84.6 ± 3.7% in 12 hours and F6 was found to be found stable for three months at both refrigerated and room temperature (RT).


Author(s):  
Pankaj P Nerker ◽  
Hitendra Mahajan ◽  
Sagar Deore ◽  
Pradyumn Ige

Nanosuspensions provide convenient formulations for improving the bioavailability and drug delivery. The objective of the investigation was to develop stable nanosuspension formulation of ramipril, with minimum surfactant concentration that could improve its solubility, stability and oral bioavailability. Ramipril is a potent antihypertensive drug, which act by inhibiting the angiotensin-converting enzyme. Nanosuspension was developed by antisolvent precipitation followed by high-pressure homogenization using hydrophilic polymers such as HPMC E5, HPMC E15, PVP K30, PVP K25, and PVA. The resulting nanosuspension was transformed into dry powder by freeze-drying process. Among all five formulations a formulation was choosen on the basis of results obtained from comparative study between different polymers based nanosuspension formulation of ramipril. The nanosuspension prepared was then evaluated for particle size, polydispesivity index, zeta potential, entrapment efficiency, saturated solubility study, scanning electron microscopy, differential scanning colorometry, and X ray diffraction. The combination of soya lecithin and pluronic F-68 as stabilizers yield nanosuspension with the smallest average particle size. The formulation of ramipril based on HPMC E 15 (Formulation B) shown enhanced dissolution rate. In which more than 60% of the drug was dissolved in the first 20 min compared to less than 25% of the pure drug within the same time period. The increase in the in vitro dissolution rate, nano size may favourably affect bioavailability.


Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 439 ◽  
Author(s):  
Hibah M. Aldawsari ◽  
Nabil A. Alhakamy ◽  
Rayees Padder ◽  
Mohammad Husain ◽  
Shadab Md

Resveratrol (RES) is a polyphenolic compound which has shown beneficial pharmacological effects such as anti-inflammatory, antioxidant, and anti-cancer effects. However, poor aqueous solubility, bioavailability, and low stability are the major limitations to the clinical application of RES. Therefore, in the present study, chitosan (CS) coated PLGA nanoparticles of RES (CS-RES-PLGA NPs) was developed, characterized and its anticancer activity was evaluated in the H1299 lung carcinoma cell line. The effects of the increase in CS coating and cryoprotectant concentration on particle size, polydispersity index (PDI) and zeta potential (ZP) were determined. The particle size, PDI, ZP and entrapment efficiency of the optimized CS-RES-PLGA NPs were found to be 341.56 ± 7.90 nm, 0.117 ± 0.01, 26.88 ± 2.69 mV and 75.13% ± 1.02% respectively. The average particle size and ZP showed a steady increase with an increase in CS concentration. The increase in positive zeta potential is evident for higher CS concentrations. The effect of trehalose as cryoprotectant on average particle size was decreased significantly (p < 0.05) when it was increased from 1%−5% w/v. TEM and SEM showed uniform particle distribution with a smooth surface and spherical shape. The CS coating provides modulation of in vitro drug release and showed a sustained release pattern. The stability of RES loaded PLGA NPs was improved by CS coating. CS-coated NPs showed greater cytotoxicity and apoptotic activities compared to free RES. The CS coated NPs had a higher antioxidant effect than the free RES. Therefore, CS coated PLGA NPs could be a potential nanocarrier of RES to improve drug solubility, entrapment, sustain release, stability and therapeutic application.


2020 ◽  
Vol 20 (3) ◽  
pp. 1321-1331 ◽  
Author(s):  
Yuanyuan Wang ◽  
Yining Yang ◽  
Yibin Yu ◽  
Jinyu Li ◽  
Weisan Pan ◽  
...  

In this study, a novel transferrin modified liposomal dioscin was prepared by the film dispersion method. The transferrin modified dioscin loaded liposomes (Tf-Lip/Dio) were near-spherical in morphology and had an average particle size of 140.07±1.33 nm, a narrow polydispersity index of <0.2 and a relatively stable zeta potential of -23.7±1.16 mV. The drug entrapment efficiency (EE) and drug loading (DL) of Tf-Lip/Dio were 88.94±1.02% and 4.16±0.05%, respectively. Tf-Lip/Dio exhibited a sustained release characterization of approximately 30% of the total dioscin content after 72 h at 37 °C. Tf-Lip/Dio showed higher cytotoxic efficacy after incubation for 24 h in both HeLa cells and HepG2 cells than in nonmodified liposomes. The enhanced antitumor activity of Tf-Lip/Dio might be due to the increased intracellular uptake, which was corroborated by laser scanning confocal microscopy and flow cytometry. Furthermore, hemolysis experiments preliminarily verified the safety of its intravenous injection. Overall, this study demonstrates Tf-Lip/Dio to be a favorable delivery vehicle for dioscin in future cancer therapy.


Author(s):  
Megha Sharma ◽  
Seema Kohli ◽  
Abhisek Pal

ABSTRACTObjective: To develop and evaluate floating microspheres of repaglinide (RG).Materials and Methods: RG loaded noneffervescent microspheres of different ratios of ethylcellulose (EC) and hydroxypropyl methylcellulose (HPMCK4M) were prepared using polyvinyl alcohol as emulsifier by solvent evaporation technique. Various process variables such as polymer ratio, stirringspeed, concentration of drug, and emulsifying agent were studied. Compatibility of drug and polymers was studied by Fourier-transform infraredspectroscopy (FTIR). Characterization, in-vitro evaluation, and kinetic studies were performed.Results: FTIR spectra have revealed no drug-excipient incompatibility. The average particle size of microspheres was in the range of 312-359 μm. Theresults showed that floating microspheres were successfully prepared with good yield (56.15-64.3%), high entrapment efficiency (58.22-70.14%),and good floating behavior (63.1-76.2%), respectively. In-vitro release data indicates appreciable amount of drug is released (62.28-73.27%) from themicrospheres in gastric fluid. The mechanism of drug release founds to follow first order kinetics (r2=0.986).Conclusion: The developed floating microspheres of RG may be used for prolonged drug release for at least 12 hrs, thereby improving bioavailabilityand patient compliance.Keywords: Repaglinide, Compatibility, Kinetic, Ethylcellulose.


Sign in / Sign up

Export Citation Format

Share Document