scholarly journals USING HISTORIC SITES IN DETERMINING PLANT-SOIL INTERACTIONS UNDER LONG TERM CONTAMINATED SOILS

Author(s):  
E .M.ABD EL LATEEF ◽  
J.E. HALL ◽  
A.A. YASSEN ◽  
M.S. ABD EL-SALAM ◽  
A.K.M. SALEM

The relationships between heavy metals in soils and crop tissues are critical in understanding the potential risk to crop yields from Zn, Cu and Ni (the principal phytotoxic elements of concern in sludge), and the possible effects on dietary Cd (the critical zootoxic element that is labile in sludge-treated soil and readily absorbed by plants. These relationships cannot be derived from the agronomic trials because the quantities of heavy metals applied to the soil in sludge are small. These are field sites have been treated with sludge for many years in operational practice and where the oncentrations of heavy metals have been significantly raised above background values, representing potentially a worse-case of soil contamination. The purpose of the study was to provide a surrogate for long-term sludge-treated agricultural soil by examining the effects on crops of heavy metals in soil irrigated with raw sewage effluent for periods of more than 80 years and containing significantly elevated concentrations of heavy metals. Methodology: Two surveys of the Gabal El Asfar Old Farm were undertaken to assess the long-term effects of heavy metals in sludge-treated soil on crop quality. In the first survey, the relationships between total and DTPA extractable heavy metals in soil and concentrations in citrus fruit were examined. Concentrations of heavy metals in leaves of citrus were measured in the second survey and related to total and DTPA extractable metals in soil. The heavy metal contents of citrus leaves and fruit (orange - eleven sampling sites; mandarin - four sampling sites), and total and DTPA extractable concentrations in soils were measured in samples collected from different areas of the Farm during two site surveys. Total and DTPA concentrations of heavy metals in the surveyed soils showed significant enrichment by long-term irrigation with sewage effluent. For example, the maximum total concentrations of Zn and Cu were 530 and 366 mg kg-1, respectively, representing a potential risk to crop yields The maximum Cd concentration detected was 9 mg kg-1 and may be a potential risk to the human food chain from uptake into staple crops grown at the farm. DTPA extractable metals were significantly (P<0.001) correlated with the total contents of Zn (r=0.91***), Cu (r=0.83***), Ni (r=0.63***) and Pb (r=0.85***) in soil when data from both surveys were pooled for statistical evaluation. There was also evidence of a weak relationship between DTPA extractable Cd and the total soil Cadmium is the only element of concern in terms of the risk to human health from uptake into food crops grown on sludge-treated soil. The total Cd concentration in soil was raised to a value 3 times the maximum EU limit for this element in sludge-treated agricultural soil. Despite the marked increase in soil Cd content, there was no detectable transfer into citrus leaves or fruit (Figure 1). The absence of Cd uptake into citrus fruit is to be expected because fruits are amongst the least sensitive plant parts to Cd accumulation. These data emphasise the minimal risk to the human diet from Cd in fruit crops grown on sludge-treated soil. . In all cases, leaf tissue concentrations were low and in some cases Cu status was below the deficiency threshold. The Cd content in leaves was small and generally <0.02 mg kg-1 DM. 

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Kevin Lombard ◽  
Mick O'Neill ◽  
April Ulery ◽  
John Mexal ◽  
Blake Onken ◽  
...  

Soils of northwest New Mexico have an elevated pH and CaCO3content that reduces Fe solubility, causes chlorosis, and reduces crop yields. Could biosolids and fly ash, enriched with Fe, provide safe alternatives to expensive Fe EDDHA (sodium ferric ethylenediamine di-(o-hydroxyphenyl-acetate)) fertilizers applied toPopulushybrid plots? Hybrid OP-367 was cultivated on a Doak sandy loam soil amended with composted biosolids or fly ash at three agricultural rates. Fly ash and Fe EDDHA treatments received urea ammonium nitrate (UAN), biosolids, enriched with N, did not. Both amendments improved soil and plant Fe. Heavy metals were below EPA regulations, but high B levels were noted in leaves of trees treated at the highest fly ash rate. pH increased in fly ash soil while salinity increased in biosolids-treated soil. Chlorosis rankings improved in poplars amended with both byproducts, although composted biosolids offered the most potential at improving Fe/tree growth cheaply without the need for synthetic inputs.


2020 ◽  
Vol 17 ◽  
pp. 00137
Author(s):  
Alevtina Kulikova ◽  
Andrei Kozlov ◽  
Nikolai Zakharov ◽  
Evgeny Yashin ◽  
Natalya Khairtdinova

The paper presents results of long-term research on effectiveness of application of highly-siliceous rocks (diatomite and zeolite) in crop cultivation technology in the conditions of leached black soil of the Middle Volga region. Crop yields and content of heavy metals (Zn, Cu, Pb, Cd, Ni) in products are given in two variants: control and variant with introduction of the highly-siliceous rocks into the soil. It has been established that diatomite from Inza deposit and zeolite from Yushanskiy deposit of Ulyanovsk region are highly effective non-traditional fertilizers due to a complex positive effect on the "soil-plant" system. Thus, the yield increase of sugar beet roots amounted to 6.4 t/ha (+23 %) when diatomite was introduced into the soil at the dose of 5 t/ha, barley – 0.93 t/ha (+52 %), spring wheat – 0, 67 t/ha (+42 %). Highly-siliceous rocks with a highly developed specific surface area, possessing unique physicochemical properties, contribute to production of ecologically safe products. At the same time, the intake of heavy metals in agricultural products for some crops and metals decreased by more than 2 times.


2013 ◽  
Vol 36 (3) ◽  
pp. 409-419 ◽  
Author(s):  
Soon-Ik Kwon ◽  
Yeon-A Jang ◽  
Gary Owens ◽  
Min-Kyeong Kim ◽  
Goo-Bok Jung ◽  
...  

2021 ◽  
Vol 11 (14) ◽  
pp. 6425
Author(s):  
Hidenori Takahashi ◽  
Shinya Omori ◽  
Hideyuki Asada ◽  
Hirofumi Fukawa ◽  
Yusuke Gotoh ◽  
...  

Cellulose nanofibre (CNF), a material composed of ultrafine fibres of wood cellulose fibrillated to nano-order level, is expected to be widely used because of its excellent properties. However, in the field of geotechnical engineering, almost no progress has been made in the development of techniques for using CNFs. The authors have focused on the use of CNF as an additive in cement treatment for soft ground, where cement is added to solidify the ground, because CNF can reduce the problems associated with cement-treated soil. This paper presents the results of a study on the method of mixing CNF, the strength and its variation obtained by adding CNF, and the change in permeability. CNF had the effect of mixing the cement evenly and reducing the variation in the strength of the treated soil. The CNF mixture increased the strength at the initial age but reduced the strength development in the long term. The addition of CNF also increased the flexural strength, although it hardly changed the permeability.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 975
Author(s):  
Paweł Świsłowski ◽  
Zbigniew Ziembik ◽  
Małgorzata Rajfur

Mosses are one of the best bioindicators in the assessment of atmospheric aerosol pollution by heavy metals. Studies using mosses allow both short- and long-term air quality monitoring. The increasing contamination of the environment (including air) is causing a search for new, cheap and effective methods of monitoring its condition. Once such method is the use of mosses in active biomonitoring. The aim of the study was to assess the atmospheric aerosol pollution with selected heavy metals (Ni, Cu, Zn, Cd, Hg and Pb) from the smoke of fireworks used during New Year’s Eve in the years 2019/2020 and 2020/2021. In studies a biomonitoring moss-bag method with moss Pleurozium schreberi (Willd. ex Brid.) Mitt. genus Pleurozium was used. The research was conducted in the town Prószków (5 km in south direction from Opole, opolskie voivodship, Poland). The moss was exposed 14 days before 31 December (from 17 to 30 of December), on New Year’s Eve (31 December and 1 January) and 2 weeks after the New Year (from 2–15 January). Higher concentrations of analysed elements were determined in samples exposed during New Year’s Eve. Increases in concentrations were demonstrated by analysis of the Relative Accumulation Factor (RAF). The results indicate that the use of fireworks during New Year’s Eve causes an increase in air pollution with heavy metals. In addition, it was shown that the COVID-19 induced restrictions during New Year’s Eve 2020 resulted in a reduction of heavy metal content in moss samples and thus in lower atmospheric aerosol pollution with these analytes. The study confirmed moss usefulness in monitoring of atmospheric aerosol pollution from point sources.


Sign in / Sign up

Export Citation Format

Share Document