scholarly journals PREPARATION AND CHARACTERIZATION OF ANTI-ACNE ETHOSOMES USING COLD AND THIN-LAYER HYDRATION METHODS

2018 ◽  
Vol 10 (1) ◽  
pp. 338
Author(s):  
Rachmawati Ramadhana Mustofa ◽  
Iskandarsyah .

Objective: This study aimed to prepare and characterize anti-acne ethosomes using the cold- and thin-layer hydration methods.Methods: A sonication step was included during ethosome preparation to improve the quality of the cold method. Azelaic acid, Phospholipon 90G,ethanol, propylene glycol, and phosphate buffer (pH 7.4) were used in the procedures. Prepared ethosomal suspensions were characterized usingtransmission electron microscopy, particle-size analysis, and spectrophotometry.Results: Ethosomes prepared using the thin-layer hydration method (F1) had small unilamellar vesicles, while those prepared using the cold methodwith 15-min sonication (F4) showed spherical, elliptical, unilamellar, and multilamellar vesicles. F1 ethosomes had a Dmean volume of 648.57±231.26,whereas those prepared using the cold method with 5- (F2), 10- (F3), and 15-min (F4) sonication had Dmean volumes of 2734.04±231.49 nm,948.90±394.52 nm, and 931.69±471.84 nm, respectively. Polydispersity indices of F2, F3, and F4 ethosomes were 0.74±0.21, 0.86±0.05, and 0.91±0.03,respectively, with a poor particle-size distribution, compared to that of F1 (0.39±0.01). Zeta potentials of F1–F4 ethosomes were −38.27±1.72 mV,−23.53±1.04 mV, −31.4±1.04 mV, and −34.3±1.61 mV, respectively. Entrapment efficiencies of F1–F4 ethosomes were 90.71±0.11%, 53.84±3.16%,72.56±0.28%, and 75.11±1.42%, respectively.Conclusion: Anti-acne ethosomes produced using the thin-layer hydration method had superior properties than those produced using the coldmethod with 15-min sonication.

2014 ◽  
Vol 798-799 ◽  
pp. 355-359 ◽  
Author(s):  
Valter Bezerra Dantas ◽  
U.U. Gomes ◽  
A.B. Vital ◽  
G.S. Marinho ◽  
Ariadne de Souza Silva

This paper presents the results of tests for characterization of soil samples collected in Mossoró-RN, UFERSA-RN Campus (5 ° 12'34 .68 "South latitude, 37 ° 19 '5.74 "west longitude), for the purpose of producing soil-cement for the manufacture of pressed blocks. Objective of improving the quality of soil-cement, and provide conditions for the use of the soil making it ideal for the production of soil-cement block. Tests of compaction, particle size analysis, plastic limit, liquid limit and correct particle size, X-ray fluorescence and morphology by scanning electron microscopy (SEM). It was concluded that the soil needs correction particle size, due to the high clay content. The method combined grading, sieving, sedimentation and blooming X-ray as the fastest and most accurate in correcting soil particle size.


1992 ◽  
Vol 82 (2) ◽  
pp. 111-115 ◽  
Author(s):  
C Abramson ◽  
J Wilton

Nail dust particles were analyzed by scanning electron microscopy for size and topography. The percentage of "fines" that could be inhaled and deposited in the alveoli and bronchioles were determined by quantitative particle size analysis. Distribution representing the largest total mass was graphed between 1 and 2 microns. The authors found that 86% of nail dust would reach the bronchioles and alveoli, and 31% could be expected to deposit in these areas.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2008
Author(s):  
Samsul Rizal ◽  
N. I. Saharudin ◽  
N. G. Olaiya ◽  
H. P. S. Abdul Khalil ◽  
M. K. Mohamad Haafiz ◽  
...  

The degradation and mechanical properties of potential polymeric materials used for green manufacturing are significant determinants. In this study, cellulose nanofibre was prepared from Schizostachyum brachycladum bamboo and used as reinforcement in the PLA/chitosan matrix using melt extrusion and compression moulding method. The cellulose nanofibre(CNF) was isolated using supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was characterised with transmission electron microscopy (TEM), FT-IR, zeta potential and particle size analysis. The mechanical, physical, and degradation properties of the resulting biocomposite were studied with moisture content, density, thickness swelling, tensile, flexural, scanning electron microscopy, thermogravimetry, and biodegradability analysis. The TEM, FT-IR, and particle size results showed successful isolation of cellulose nanofibre using this method. The result showed that the physical, mechanical, and degradation properties of PLA/chitosan/CNF biocomposite were significantly enhanced with cellulose nanofibre. The density, thickness swelling, and moisture content increased with the addition of CNF. Also, tensile strength and modulus; flexural strength and modulus increased; while the elongation reduced. The carbon residue from the thermal degradation and the glass transition temperature of the PLA/chitosan/CNF biocomposite was observed to increase with the addition of CNF. The result showed that the biocomposite has potential for green and sustainable industrial application.


1989 ◽  
Vol 169 ◽  
Author(s):  
Rollin E. Lakis ◽  
Sidney R. Butler

AbstractY1Ba2Cu3O7 has been prepared by the evaporative decomposition of solutions method. Nitrate and mixed anion solutions were atomized and decomposed at temperatures ranging from 300°C to 950°C. The resulting materials have been characterized using x-ray powder diffraction, Thermal Gravimetric Analysis (TGA), particle size analysis, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The powder consists of 0.3 micron agglomerated hollow spheres with a primary particle size of 0.06 micron. TGA and x-ray diffraction indicate the presence of barium nitrate and barium carbonate due to incomplete decomposition and/or product contamination by the process environment.


2015 ◽  
Vol 1087 ◽  
pp. 142-146 ◽  
Author(s):  
Rosli Asmawi ◽  
Mohd Halim Irwan Ibrahim ◽  
Azriszul Mohd Amin ◽  
Najwa Mustapha ◽  
Iis Sopyan

Nanocrystalline hydroxyapatite (HA) powder was synthesized by a simple heating process involving simple chemical reaction. The characterization of the produced powder showed that the powder is nanosize with particle in the range of 30-70 mm in diameter and almost evenly spherical in shape. The powder also has a high surface area of 43.16 m2/g. Field Emission Scanning Electron Microscopy (FESEM) observation showed the crystallite and particle size become bigger with an increment of calcination temperature, indicating increasing of crystallinity.. FESEM observation showed the particle size become bigger with an increment of calcinations temperature. It is in agreement with the crystallite size analysis, obtained by Scherer’s formula and particle size analysis, measured by nanoSizer. X-ray Diffraction (XRD) and Fourier Transform Infra Red Spectroscopy (FTIR) analyses exhibited the same result, where HA phase was clearly observed at at various temperatures up to 600 ̊C. However, at temperature more than 600 ̊C, Tri calcium phosphate (TCP) phase appeared suppressing the HA phase, producing biphasic calcium phosphate.


2020 ◽  
Vol 988 ◽  
pp. 23-29
Author(s):  
Davino Aditya Dwinanda ◽  
Donanta Dhaneswara ◽  
Bionolla Shandiana

Refractory coating is widely used in metal casting process to protect the mold from direct contact with molten metal. This coating also could improve the surface quality of casting product. Zircon is common materials that used as filler, but the materials cost is quite high. Therefore, alternative material is needed to make partial substitution of the filler. Silica Fused can be considered as filler because it has good refractoriness. This study aims to determine silica fused is reliable as an alternative to substitute zircon filler. The samples were made with 16%, 18%, and 20% silica fused addition and different treatment which were heated and non-heated drying. Particle size and distributions of the filler were analyzed using Particle Size Analysis. Viscosity measurement has been done to coating slurry to analyze the rheological characteristics of the slurry. The surface morphology of dried coating was taken using Scanning Electron Microscope. XRD test also has been done to analyse the compound. The quality of coating was determined from the thermal stability of the coating that was analyzed using Simultaneous Thermal Analysis. The result shows that silica fused is reliable as an alternative material for filler partial substitution.


2012 ◽  
Vol 18 (S2) ◽  
pp. 1364-1365 ◽  
Author(s):  
Y. Zhao ◽  
Y. Tang ◽  
G. Vaughan ◽  
D. Ozkaya

Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 – August 2, 2012.


2018 ◽  
Vol 61 (3) ◽  
pp. 995-1000 ◽  
Author(s):  
Ehsan Ghane ◽  
Gary W. Feyereisen ◽  
Carl J. Rosen ◽  
Ulrike W. Tschirner

Abstract. A denitrification bed is a system that can reduce the nitrate concentration in subsurface drainage water. There is a need to investigate the carbon quality of old woodchips to gain a better understanding of the effect of age on woodchip properties. The objectives of this study were to characterize the carbon quality and carbon to nitrogen (C/N) ratio of aged woodchips and to examine the suitability of a denitrification bed for a replicated experiment. To achieve these goals, we excavated four-year-old woodchips along the length of a 106.4 m long denitrification bed near Willmar, Minnesota, and analyzed them for particle size, C/N ratio, and carbon quality. Particle size analysis showed similarities from 12.5 to 106.4 m along the bed. We found a mean C/N ratio ranging from 58.4 ±3.17 to 153.4 ±9.57 (smallest at the inlet). The mean lignocellulose index (LCI, a measure of carbon quality) of the four-year-old woodchips ranged from 0.47 to 0.57 (highest at the inlet). The woodchip particle sizes, C/N ratios, and LCI from 25.9 to 106.4 m along the bed length were similar. In conclusion, the C/N ratio and LCI of the four-year-old woodchips showed effects of decomposition and increased woodchip carbon recalcitrance over time, respectively. Keywords: Denitrifying bioreactor, Tile drainage, Water quality, Woodchip bioreactor.


Sign in / Sign up

Export Citation Format

Share Document