scholarly journals RECENT NANOCOCHLEATE DRUG DELIVERY SYSTEM FOR CANCER TREATMENT: A REVIEW

Author(s):  
SUJIT NAYEK ◽  
ABHIRAMI VENKATACHALAM ◽  
SANGEETA CHOUDHURY

Nanocochleates are at the forefront of the fast-growing nanotechnology sector in the delivery of drugs for cancer. This nanotechnology is the use of the cationic and anionic encapsulated drug that has poor oral bioavailability. Nanocochleate is a lipid-based drug delivery in the liposomal vesicles that is converted by calcium divalent cation into nanocochleate. Nanocochleates technology use encapsulations of the anticancer agent, which have low solubility, oral bioavailability and low permeability. This paper shows and provides an overview of the benefits of nanocochleates, drug delivery mechanism, choice of prevalent components (Phospholipids and Cations), various ways of producing nanocochleates and nanocochleate stability. Nanocochleates have far fewer constraints than other traditional carriers. To characterize nanocochleates, the suitable analytical methods are required. Therefore, in the therapy of cancer, nanocochleate becomes commonly applied and more prospective drug delivery system.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 544
Author(s):  
Miao Wang ◽  
Sung-Kyun You ◽  
Hong-Ki Lee ◽  
Min-Gu Han ◽  
Hyeon-Min Lee ◽  
...  

Docetaxel (DTX) has clinical efficacy in the treatment of breast cancer, but it is difficult to develop a product for oral administration, due to low solubility and permeability. This study focused on preparing a self-microemulsifying drug delivery system (SME) loaded with DTX-phospholipid complex (DTX@PLC), to improve the dissolution and gastrointestinal (GI) permeability of DTX. A dual technique combining the phospholipid complexation and SME formulation described as improving upon the disadvantages of DTX has been proposed. We hypothesized that the complexation of DTX with phospholipids can improve the lipophilicity of DTX, thereby increasing the affinity of the drug to the cell lipid membrane, and simultaneously improving permeability through the GI barrier. Meanwhile, DTX@PLC-loaded SME (DTX@PLC-SME) increases the dissolution and surface area of DTX by forming a microemulsion in the intestinal fluid, providing sufficient opportunity for the drug to contact the GI membrane. First, we prepared DTX@PLC-SME by combining dual technologies, which are advantages for oral absorption. Next, we optimized DTX@PLC-SME with nanosized droplets (117.1 nm), low precipitation (8.9%), and high solubility (33.0 mg/g), which formed a homogeneous microemulsion in the aqueous phase. Dissolution and cellular uptake studies demonstrated that DTX@PLC-SME showed 5.6-fold higher dissolution and 2.3-fold higher DTX uptake in Caco-2 cells than raw material. In addition, an ex vivo gut sac study confirmed that DTX@PLC-SME improved GI permeability of DTX by 2.6-fold compared to raw material. These results suggested that DTX@PLC-SME can significantly overcome the disadvantages of anticancer agents, such as low solubility and permeability.


Author(s):  
Md. Khalid Anwer ◽  
Muzaffar Iqbal ◽  
Mohammed F. Aldawsari ◽  
Ahmed Alalaiwe ◽  
Muqtader Mohammad ◽  
...  

2012 ◽  
Vol 622-623 ◽  
pp. 821-826
Author(s):  
Yu Wen ◽  
Xiao Feng Deng ◽  
Liang Liang Liu ◽  
Shu Yun Shi ◽  
Li Xiong

Photodynamic therapy (PDT) is an effective, noninvasive and nontoxic therapeutics for cancer and some other diseases. It is becoming a alternative of traditional therapeutics for cancers. But the efficacy of PDT was restricted by insufficient selectivity and low solubility. In this study, novel multifunctional silica-based magnetic nanoparticles were prepared as targeting drug delivery system to achieve higher specificity and better solubility. Haematoporphyrin derivative (photosan) was used as photosensitizer. Magnetite nanoparticles (Fe3O4) and photosan were incorporated in silica nanoparticles by microemulsion and sol-gel methods. The prepared nanoparticles were characterized by X-ray diffraction, and transmission electron microscopy. The nanoparticles possessed good biocompatibility and could cause remarkable photodynamic anti-tumor effects. These suggested that photosan-Fe3O4 nanoparticles had great potential as effective drug delivery system in targeting photodynamic therapy.


2006 ◽  
Vol 7 (3) ◽  
Author(s):  
Pradip Kumar Ghosh ◽  
Rita J. Majithiya ◽  
Manish L. Umrethia ◽  
Rayasa S. R. Murthy

Author(s):  
MANDAR J BHANDWALKAR ◽  
PRASAD S DUBAL ◽  
AKASH K.TUPE ◽  
SUPRIYA N MANDRUPKAR

In recent years, gastroretentive drug delivery system (GRDDS) has gained researcher’s interest in the field of oral drug delivery. Various GRDDS approaches can be utilized to retain the dosage forms in the stomach and to release the drug slowly for an extended period of time. GRDDS can be used to prolong the residence time of delivery system in the stomach. This results in targeting of drug release at a specific site for the systemic or local effects. GRDDS can be used to overcome challenges associated with conventional oral dosage forms and to release the drug at a specific absorption site to improve bioavailability of particular drug substance. The challenges include fast gastric emptying of the dosage form which results in the poor bioavailability of the drug. Prolongation of the retention of drugs in stomach those having low solubility at high intestinal pH improves the solubility of drugs. GRDDS has proved to be effective in systemic actions as well as in local actions to treat gastric or duodenal ulcers. Local activity in the upper part of the small intestine can be obtained by improving the residence time of delivery system in the stomach. The system is useful for drugs which are unstable in the intestine or having a low solubility/permeability in the small intestine. Various GRDDS approaches include high density (sinking) systems, low-density (floating systems), mucoadhesive, expandable, unfoldable, superporous hydrogel systems, and magnetic systems.


Author(s):  
S.G. Barnwell ◽  
L. Gauci ◽  
R.J. Harris ◽  
D. Attwood ◽  
G. Littlewood ◽  
...  

Pharmaceutics ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 58 ◽  
Author(s):  
Dong Shin ◽  
Bo Chae ◽  
Yoon Goo ◽  
Ho Yoon ◽  
Chang Kim ◽  
...  

To improve the dissolution and oral bioavailability of valsartan (VST), we previously formulated a supersaturable self-microemulsifying drug delivery system (SuSMED) composed of Capmul® MCM (oil), Tween® 80 (surfactant), Transcutol® P (cosurfactant), and Poloxamer 407 (precipitation inhibitor) but encountered a stability problem (Transcutol® P-induced weight loss in storage) after solidification. In the present study, replacing Transcutol® P with Gelucire® 44/14 resulted in a novel SuSMED formulation, wherein the total amount of surfactant/cosurfactant was less than that of the previous formulation. Solidified SuSMED (S-SuSMED) granules were prepared by blending VST-containing SuSMED with selective solid carriers, L-HPC and Florite® PS-10, wherein VST existed in an amorphous state. S-SuSMED tablets fabricated by direct compression with additional excipients were sufficiently stable in terms of drug content and impurity changes after 6 months of storage at accelerated conditions (40 ± 2 °C and 75 ± 5% relative humidity). Consequently, enhanced dissolution was obtained (pH 1.2, 2 h): 6-fold for S-SuSMED granules against raw VST; 2.3-fold for S-SuSMED tablets against Diovan® (reference tablet). S-SuSMED tablets increased oral bioavailability in rats (10 mg/kg VST dose): approximately 177–198% versus raw VST and Diovan®. Therefore, VST-loaded S-SuSMED formulations might be good candidates for practical development in the pharmaceutical industry.


Sign in / Sign up

Export Citation Format

Share Document