scholarly journals DEVELOPMENT AND VALIDATION OF SEVEN PHENYL HYDRAZINE CHLORO ESTER ISOMERS (PGIs) BY RP-HPLC-UV METHOD IN ANTICOAGULANT DRUG SUBSTANCE; APIXABAN

Author(s):  
SARADHI VENKATA RAMANA V. ◽  
DURGA RAJA K. ◽  
RAGHU BABU K. ◽  
PADMA M. ◽  
JAGADEESH KUMAR V. ◽  
...  

Objective: The objective of this work was to develop and validate a simple and sensitive reverse-phase high-pressure liquid chromatography method for the determination of seven potential genotoxic impurities in Apixaban drug substance. Methods: The optimized separation was achieved by using ACE 3 C18 PFP (150 mm×4.6 mm, 3 µm) HPLC column. The mobile phase-A was a degassed mixture of 0.01M Ammonium acetate buffer(PH adjusted 4.9±0.05 with diluted glacial acetic acid) and mobile phase-B was a degassed mixture of Acetonitrile, Isopropyl alcohol and Buffer PH 4.9 in the ratio of 60:20:20 v/v/v. The gradient program was operated at a flow rate of 1.0 ml/min and UV detection was at 330 nm. Results: The method was superior at linearity for seven impurities and correlation coefficient values were larger than 0.999, moreover, in the separation point of view, this method further achieved no matrix interference through chromatography by better resolution of the other impurities from the Apixaban drug substance and its related impurities for the accurate analysis of seven potential genotoxic impurities. The established limits of detection (LOD), limits of quantification (LOQ) values for the seven mutagenic impurities were each of 5 ppm (0.015µg/ml) and15 ppm (0.045µg/ml) respectively. The developed method was validated as per ICH guidelines and applied as a generic method to determine these seven potential genotoxic impurities for the pharmaceutical process control and drug material release. Conclusion: Validation of this analytical method was carried out including stability, selectivity, linearity, accuracy, system precision, method precision and intermediate precision thus proving that the described RP-HPLC method could be employed for fast and simple analysis of sevenphenyl hydrazine chloro ester isomers in Apixaban drug substance.

2021 ◽  
Vol 37 (02) ◽  
pp. 493-498
Author(s):  
Mohan Bhatale ◽  
Neelakandan Kaliyaperumal ◽  
Gopalakrishnan Mannathusamy ◽  
Gurunathan Ramalingam

A simple, selective, linear having accuracy and specific of reverse phase high-performance liquid chromatographic (RP-HPLC) method for determination of Genotoxic impurity Hydroxylamine Hydrochloride of drug Leflunomide is reported.The separation and analysis were done on YMC Triart C18 (4.6 mm x 150 mm), having particle size 3.0 μm. KH2PO4 in 2000 mL of purified water and 2 mL triethylamine with pH 2.5 with phosphoric acid is mobile phase-A while acetonitrile is mobile Phase-B with gradient program. The elution achieved with 1.50 mL/min flow rate and using UV detection at 230 nm wavelength. Selected column oven temperature is 45°C and auto sampler 5°C respectively. In this method linearity and accuracy of Hydroxylamine HCl covered with specification limit of LOQ to 150 % (i.e.3 to 23 ppm). The observed correlation coefficient is 0.99965 and recovery in between 99.07 to 114.94. In method precision (ie.repeatability) and intermediate precision (IP) observed % RSD of six spiked test preparation is below 5.0 %. The standard and sample were stable for 3 days when stored at 2 to 8°C temperature. In robustness studies system suitability parameters ie tailing factor, theoretical plates and %RSD does not show significant changes. The present RP-HPLC method is selective, robust, linear, and precise for detection of Hydroxylamine HCl.


Author(s):  
MD. Muzaffar -ur- Rehman1 ◽  
G. Nagamallika

A simple, rapid, precise, and accurate RP-HPLC method for the estimation of Ivabradine Hydrochloride an anti-anginal agent, both as a bulk drug and in pharmaceutical formulation was developed. The chromatographic separation was achieved on a Thermosil C18 150 × 4.5 mm, 5μm column by using a mobile phase containing a mixture of methanol and phosphate buffer pH 6.5 in the ratio of 65:35 % v/v at a flow rate of 1ml/min and at an ambient temperature. The detection was monitored at a wavelength of 265nm. A clear chromatographic peak was identified with the retention time of 4.36 min and tailing factor of 1.23. The developed method was validated according to ICH guidelines with respect to specificity, linearity, accuracy, precision and robustness. The method shows a good linear relationship with correlation co-efficient of more than 0.992 in the concentration range of 30μg-150μg. The method showed mean % Recovery of 100.4% and %RSD for repeatability and intermediate precision was less than 2%. The proposed method can be used successfully for the quantitative determination of Ivabradine HCL in pharmaceutical dosage forms.


Author(s):  
Sachin B. Gholve ◽  
Jaiprakash N. Sangshetti ◽  
Omprakash G. Bhusnure ◽  
Ram S. Sakhare ◽  
Pratap H. Bhosale ◽  
...  

A rapid specific RP-HPLC method has been developed for the determination of Lansoprazole impurities in the drug substance. The control of pharmaceutical impurities is currently a critical issue in the pharmaceutical industry. The International Council for Harmonization (ICH) has formulated a workable guideline regarding the control of impurities. The objective of the recent study was to develop and validate a HPLC method for the quantitative determination of process-related impurities of Lansoprazole in pharmaceutical drug substance. Lansoprazole, 2-[[[3-methyl-4-(2,2,2-trifluoroethoxy)-2-pyridinyl] methyl]-sulfinyl]- 1H-benzimidazole is an proton pump inhibitor used in the management of gastric ulcers. Chromatographic identification of the impurities was carried out by response surface methodology, applying a three-level Box Behnken design with three center points. Three factors selected were a mobile phase, flow rate, column temperature. Evaluation of the main factor, their interaction, and the quadric effect on peak resolution were done on Waters Symmetry C8, 250 x 4.6mm, 5µm column is used for the development of the method. The mobile phase consists of buffer and acetonitrile. The flow rate of the mobile phase was 1.0 ml/min with gradient elution. The column temperature is ambient and the detection wavelength is 235 nm. The injection volume was 10 µL. The method was validated as per ICH guidelines for linearity in the range of 50-150 µg/ml and the LOD & LOQ values obtained were 0.437×10-4 and 0.1325×10-3 µg/ml respectively which specifies the method's sensitivity. The proposed method was successfully used to determine the Lansoprazole impurities in drug substances.


2021 ◽  
Vol 37 (2) ◽  
pp. 493-498
Author(s):  
Mohan Bhatale ◽  
Neelakandan Kaliyaperumal ◽  
Gopalakrishnan Mannathusamy ◽  
Gurunathan Ramalingam

A simple, selective, linear having accuracy and specific of reverse phase high-performance liquid chromatographic (RP-HPLC) method for determination of Genotoxic impurity Hydroxylamine Hydrochloride of drug Leflunomide is reported.The separation and analysis were done on YMC Triart C18 (4.6 mm x 150 mm), having particle size 3.0 μm. KH2PO4 in 2000 mL of purified water and 2 mL triethylamine with pH 2.5 with phosphoric acid is mobile phase-A while acetonitrile is mobile Phase-B with gradient program. The elution achieved with 1.50 mL/min flow rate and using UV detection at 230 nm wavelength. Selected column oven temperature is 45°C and auto sampler 5°C respectively. In this method linearity and accuracy of Hydroxylamine HCl covered with specification limit of LOQ to 150 % (i.e.3 to 23 ppm). The observed correlation coefficient is 0.99965 and recovery in between 99.07 to 114.94. In method precision (ie.repeatability) and intermediate precision (IP) observed % RSD of six spiked test preparation is below 5.0 %. The standard and sample were stable for 3 days when stored at 2 to 8°C temperature. In robustness studies system suitability parameters ie tailing factor, theoretical plates and %RSD does not show significant changes. The present RP-HPLC method is selective, robust, linear, and precise for detection of Hydroxylamine HCl.


Author(s):  
J. Nageswara Rao ◽  
Ch. Sudhakar ◽  
Som Shankar Dubey

A new Isocractic RP-HPLC method was established for the assay of Tenofovir disoproxil orotate. As per ICH guidelines, the method was validated by using a chromatographic column YMC Pack ODS-AQ, (250mm x4.6mm x 5μm particle size,) at a temperature of 300C and an Isocractic mobile phase of 0.1% Triethylamine buffer, adjusted the pH to 6.0 with ortho phosphoric and acetonitrile in the ratio of (55%: 45%) was used with a flow rate of 1.0mLmin-1. The diluent is a mixture of water and acetonitrile in the ratio of (95:5v/v) and the sample cooler temperature was 5°C. The injection volume was 10μL and detection was achieved at 260nm with UV and PDA detector system for UV detection. The % RSD, Linearity, Range, Accuracy, Precision, Ruggedness (Intermediate Precision) and Robustness are found to be satisfactory. Therefore the method is assumed to be suitable for the assay of the Tenofovir disoproxil orotate by RP-HPLC method.


2019 ◽  
Vol 9 (o3) ◽  
Author(s):  
Imad Tarek Hanoon ◽  
Abed Mohammed Daheir AL-Joubory 2 ◽  
Marwa Mohamed Saied 3

A simple , specific, accurate and precise RP-HPLC method was developed for determination of Irbesartan (IRB) in pharmaceutical dosage forms in tablets products and sachet using symmetry (L 1 ) column at 30°C . The signal was detected at 225 nm. A mobile phase dissolve 0.5 g of buffer potassium phosphate in 100 ml distilled water and adjust pH 2.7 , methanol and acetonitrile at ratio (40 :30 :30 ) . and flow rate 1.2ml/min -1 at pH=7.2 a mobile phase The percent recovery was detected 101 % and the linearity of concentration was 10-50 µg.ml -1 and supported this method by using (FT.I.R.) spectrum method for organic spectrophotometer to prove the chemical structure of this drug and some physical properties . we are obtained the result is identical of other literature . The proposed method was applied successfully for determination of the IRB in tablets products.


Separations ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 5
Author(s):  
Mohd Afzal ◽  
Mohd. Muddassir ◽  
Abdullah Alarifi ◽  
Mohammed Tahir Ansari

A highly specific, accurate, and simple RP-HPLC technique was developed for the real-time quantification of domperidone (DOMP) and lansoprazole (LANS) in commercial formulations. Chromatographic studies were performed using a Luna C8(2), 5 μm, 100Å, column (250 × 4.6 mm, Phenomenex) with a mobile phase composed of acetonitrile/2 mM ammonium acetate (51:49 v/v), pH 6.7. The flow rate was 1 mL·min−1 with UV detection at 289 nm. Linearity was observed within the range of 4–36 µg·mL−1 for domperidone and 2–18 µg·mL−1 for lansoprazole. Method optimization was achieved using Box-Behnken design software, in which three key variables were examined, namely, the flow rate (A), the composition of the mobile phase (B), and the pH (C). The retention time (Y1 and Y3) and the peak area (Y2 and Y4) were taken as the response parameters. We observed that slight alterations in the mobile phase and the flow rate influenced the outcome, whereas the pH exerted no effect. Method validation featured various ICH parameters including linearity, limit of detection (LOD), accuracy, precision, ruggedness, robustness, stability, and system suitability. This method is potentially useful for the analysis of commercial formulations and laboratory preparations.


2006 ◽  
Vol 3 (1) ◽  
pp. 60-64 ◽  
Author(s):  
P. Venkata Reddy ◽  
B. Sudha Rani ◽  
G. Srinu Babu ◽  
J. V. L. N. Seshagiri Rao

A reverse phase HPLC method is developed for the determination of Raloxifene in pharmaceutical dosage forms. Chromatography was carried out on an inertsil C18 column using a mixture of acetonitrile and phosphate buffer (30:70 v/v) as the mobile phase at a flow rate of 1 mL/min. Detection was carried out at 290 nm .The retention time of the drug was 10.609 min. The method produced linear responses in the concentration range of 0.5-200 µg/mL of Raloxifene. The method was found to be applicable for determination of the drug in tablets.


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (12) ◽  
pp. 32-36
Author(s):  
T. Vishalakhi ◽  
◽  
S. K Kumar ◽  
K Sujana ◽  
P Rani

A simple validated RP HPLC method for the estimation of rizatriptan benzoate in pharmaceutical dosage form and bulk was developed for routine analysis. This method was developed by selecting Agilent TC C18 (250 x 4.6 mm, 5 μ) column as stationary phase and acrylonibrile:water (45:55), pH adjusted to 3, as mobile phase. Flow rate of mobile phase was maintained at 4: 1 mL/min at ambient temperature throughout the experiment. Quantification was achieved with ultraviolet (DAD) detection at 220 nm. The retention time obtained for rizatriptan was 2.8 min. The detector response was linear in the concentration range of 2-25μg/mL. This method was validated and shown to be specific, sensitive, precise, linear, accurate, rugged and robust. Hence, this method can be applied for routine quality control of rizatriptan benzoate in dosage forms as well as in bulk drug.


2021 ◽  
Vol 66 (3) ◽  
pp. 172-176
Author(s):  
Lyubov Borisovna Kalikova ◽  
E. R. Boyko

Adenine nucleotides (ATP, ADP and AMP) play a central role in the regulation of metabolism and energy: they provide the energy balance of the cell, determine its redox state, act as allosteric effectors of a number of enzymes, modulate signaling and transcription factors and activate oxidation or biosynthesis substrates. A large number of methods have been developed to determine the level of ATP, ADP and AMP, but the most universal and effective method for the separation and analysis of complex mixtures is the reversed-phase high-performance liquid chromatography method (RP-HPLC). The aim of this study is to determine the optimal conditions for the qualitative separation and quantitative determination of standard solutions of ATP (1 mmol/l), ADP (0,5 mmol/l) and AMP (0,1 mmol/l) by RP-HPLC. The degree of separation of adenine nucleotides was estimated by the time of peak output in the chromatogram. To achieve the goal, the following tasks were set: assess the effect of the temperature of the analysis on the separation and change of the release time of the analytes in the chromatogram; determine the most optimal composition of the mobile phase for the separation of ATP, ADP and AMP in the chromatogram (the content of the organic solvent in the solution); to identify the effect of pH of the mobile phase on the separation of standard solutions of adenine nucleotides; set the optimal molarity of the mobile phase for the separation of ATP, ADP and AMP in the chromatogram. It was found that the temperature of the analysis does not affect the quality of peak separation, while the composition and pH of the mobile phase have a significant effect on the complete and clear separation of the studied nucleotides in the chromatogram. It was determined that the analysis temperature of 37°C and the mobile phase of 0.05 M KH2PO4 (pH 6.0) are optimal for separating the peaks of adenine nucleotides.


Sign in / Sign up

Export Citation Format

Share Document