scholarly journals FORMULATION AND EVALUATION OF CELECOXIB CREAM AND ITS RELEASED STUDY

Author(s):  
SADIA ANWAR ◽  
SYED UMER JAN ◽  
RAHMAN GUL

Objective: The purpose of this study was to formulate and evaluate of Celecoxib cream and it’s in vitro release study. Methods: The release study was conducted, using dialysis cellulose membrane, in Franz cells. The donor chamber was filled with phosphate buffer pH 7.4, released medium were analyzed by UV-Vis spectrophotometer at 250 nm. Kinetics model was used for calculations. The cream was followed by different evaluations like pH measurement, homogeneity, spreadability, stability study, drug content, SEM, XRD studies and skin irritation test was used for the reliability of physical conditions and chemical relation. DD solver and SPSS were used for statistical analyzation of the data. Results: The best in vitro drug release profile achieved with thyme oil in Celecoxib cream. Formulation F2 showed the highest (83%) released. The results of the Celecoxib (1%) were suitable in all constraints. The prepared Celecoxib cream was encouraging for the formulation of transdermal drug delivery. Conclusion: The Celecoxib cream was successfully prepared and could be beneficial for transdermal drug delivery.

Author(s):  
PAMU SANDHYA

Objective: The main objective of this study was to preparation and evaluation of efavirenz (EFV) to enhance its solubility and dissolution rate by self-emulsifying drug delivery system. Methods: EFV self-emulsifying drug delivery systems (SNEDDS) were formulated using different oils, surfactant, and co-surfactant. Peceol, Tween 20, and Capmul MCM were used as oil, surfactant, and co-surfactant, respectively, followed by the evaluation by the performance of different tests such as visual observation, solubility studies, thermodynamic stability study, transmittance studies, drug content, and in-vitro release study. Results: Fourier-transform infrared studies revealed negligible drug and polymer interaction. From the phase diagram, it was observed that self-emulsifying region was enhanced with increasing surfactant and co-surfactant concentrations with oil. F13 was selected as optimized formulation on the basis of physicochemical parameters, particle size, and in-vitro dissolution studies with the release of 98.39±5.10% drug in 1 hour. The optimized formulation size was found to be 156.7 nm as mean droplet size and Z-Average of 808.6 nm with -18.3 mV as zeta potential. Conclusion: The study demonstrated that SNEDDS was a promising strategy to enhance the dissolution rate of EFV by improving solubility.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 163 ◽  
Author(s):  
Yongtai Zhang ◽  
Hongmei Hu ◽  
Qian Jing ◽  
Zhi Wang ◽  
Zehui He ◽  
...  

In the current study, diethylene glycol monoethyl ether-mediated microemulsions were combined with microneedles for enhanced transdermal aconitine delivery. The oil-in-water microemulsion increasedaconitine solubility and enhanced transdermal drug delivery and assistance with metal microneedles enhanced permeation of the aconitine-loaded microemulsion. Carried by the microemulsion, the in vitro permeability of aconitine was significantly enhanced, and further improved using microneedles. In vivo microdialysis revealed that the subcutaneous local drug concentration reached a high level within 30 min and remained relatively consistent to the end of the experimental period. AUC0-t of the microemulsion group was significantly higher than that of the aqueous solution group, and the microemulsion combined with microneedles group achieved the highest AUC0-t among the tested groups. The microemulsion and microdialysis probe also showed good biocompatibility with skin tissue. The microemulsion could be internalized by HaCaT and CCC-ESF-1 cells via lysosomes. The in vitro cytotoxicity of aconitine toward skin cells was reduced via encapsulation by microemulsion, and the prepared microemulsion developed no skin irritation. Hence, transdermal aconitine delivery and drug biosafety were effectively improved by loading into the microemulsion and assisting with microneedles, and in vivo microdialysis technique is suitable for realtime monitoring of transdermal drug delivery with microemulsion-based drug vehicles.


2012 ◽  
Vol 506 ◽  
pp. 457-460
Author(s):  
Sureewan Duangjit ◽  
Praneet Opanasopit ◽  
Theerasak Rojanarata ◽  
Tanasait Ngawhirunpat

The aim of this study was to investigate the effect of surfactants on characteristic and in vitro release of liposomes containing meloxicam (MX), model of water insoluble drug. The potential use of deformable liposomes for drug delivery system was developed and investigated. The formulation composed of constant amount of phosphatidylcholine (PC) and MX and various amounts of cholesterol (Chol), sodium cholate (NaChol), sodium oleate (NaO) and stearylamine (SA) was formulated by reverse phase evaporation method. The vesicle size, zeta potential, morphology, entrapment efficiency, loading efficiency, stability andin vitrorelease study were evaluated. The result indicated that the entrapment efficiency andin vitrorelease study of vesicle formulations containing surfactants were significantly higher than the conventional liposome and MX suspension. The formulation of 10:2:2:5 PC/MX/Chol/NaO provided the maximum entrapment efficiency and drug release. Our research suggested that MX loaded in deformable liposomes containing surfactants can be potentially used as a drug delivery carrier for water insoluble drug.


2019 ◽  
Vol 9 (2) ◽  
pp. 97-101
Author(s):  
Rinku Gonekar ◽  
Mohan Lal Kori

The objective of the present study is to develop colon targeted drug delivery system using dextrin (polysaccharide) as a carrier for Azathioprine.  Microspheres containing azathioprine, dextrin and various excipients were prepared by solvent evaporation technique. The prepared microsphere were evaluated by different methods parameters like particle size,  drug entrapment efficiency, percentage yield, shape and surface morphology  and in vitro drug release study. Drug release profile was evaluated in simulated gastric, intestinal fluid and simulated colonic fluid. Best formulation was decided on the basis drug release profile in simulated gastric, intestinal fluid and simulated colonic fluid. In dextrin based microspheres, dextrin as a carrier was found to be suitable for targeting of Azathioprine for local action in the site of colon. Dextrin microspheres released 95-99% of azathioprine in simulated colonic fluid with 4% human fecal matter solution. The results of in-vitro studies of the azathioprine microspheres indicate that for colon targeting dextrin are suitable carriers to deliver the drug specifically in the colonic region. Dextrin based azathoprine microspheres showed no significance change in particle size and % residual upon storage at 5 ± 3ºC, 25 ± 2ºC/60 ± 5% RH (room temperature) and 40 ± 2ºC/75 ±5%RH humidity for three months. Keywords: azathioprine, microsphere, dextrin, colon specific drug delivery.


Author(s):  
Surendra Singh Saurabh ◽  
Roshan Issarani ◽  
Nagori Bp

Objective: In the present dissertation work, the aim was to prepare self-emulsifying drug delivery systems (SEDDS) of etoricoxib to improve its solubility with a view to enhance its oral bioavailability.Methods: The prepared SEDDS was the concentrate of drug, oil, surfactants, and cosurfactant. The formulation was evaluated for various tests such as solubility, globule size, thermodynamic stability study, pH determination, ease of dispersibility, uniformity index, drug content, in-vitro release study, and in-vitro permeation study.Results: The optimized formulation F6 showed drug release (79.21±2.73%), droplet size (0.546 μm). In vitro drug release of the F6 was highly significant (p<0.05) as compared to the plain drug.Conclusion: All formulations of etoricoxib SEDDS were showed faster dissolution than plain drug (p<0.05), mean bioavailability of etoricoxib increase in respect to the plain drug. The F6 can be further used for the preparation of various solid SEDDS formulations.


2020 ◽  
Vol 12 (2) ◽  
pp. 117-126
Author(s):  
Nitin Gupta ◽  
Giriraj T. Kulkarni ◽  
Pravin Kumar ◽  
Rajendra Awasthi

Background: Natural plant-based materials have several advantages. They are biodegradable, biocompatible, non-toxic, cost-effective, environment friendly, easily available, and can undergo chemical modification. Objective: Grewia asiatica extracts contain various phytoconstituents and have therapeutic benefits such as antimicrobial and anti-diabetic properties. They form colloidal dispersions and make a highly viscous gel in water. Considering these properties of Grewia asiatica mucilage, the present work was aimed to investigate its application in the formulation of gel for the topical delivery of diclofenac sodium. Method: Gel formulations were prepared with and without penetration enhancers using 1% w/w diclofenac sodium as a model drug. The formulations were subjected to different evaluation tests like physical characterization, pH, spreadability, skin irritation, gel retrogradation, drug content and in vitro drug diffusion. The in vitro diffusion of the drug from different formulations was compared with the in vitro drug release profile of the marketed formulation (Omni gel, Cipla, India). To assess the release mechanism, the in vitro release data was analyzed using Korsmeyers-Peppas’ equation. Results: The mucilage showed good gelling behavior in 5.50, 5.75, 6.00, 6.25 and 6.50% concentrations. All the formulations followed the anomalous transport mechanism of drug release. The formulation BP3 showed 90% of drug release after 5.2h of dissolution study, which was similar to the marketed formulation. Hence, formulation BP3 was ideal among all the formulations. Conclusion: It might be concluded that, the Grewia asiatica mucilage may be used as a natural polymeric material for gel formulation.


Sign in / Sign up

Export Citation Format

Share Document