scholarly journals A VALIDATED GRADIENT STABILITY-INDICATING LC METHOD FOR THE ANALYSIS OF VALSARTAN IN PHARMACEUTICAL DOSAGE FORM

Author(s):  
Tripti Sharma ◽  
Sudan Chandra Si.

<p><strong>Objective: </strong>The objective of this research work was to develop a sensitive, precise, specific, linear and stability-indicating gradient HPLC method for the estimation of valsartan in bulk drug and in pharmaceutical preparations.</p><p><strong>Methods: </strong>Chromatographic separation was achieved on C-18 stationary phase with a gradient mobile phase consisting of orthophosphoric acid buffer (the pH of the solution was adjusted to 4.2±0.05 with triethylamine) and methanol. The eluent was monitored with PDA detector at 225 nm with a flow rate of 1.0 ml/min, run time of 65 min.</p><p><strong>Results: </strong>The method was linear over the range of 20-120μg/ml. The correlation coefficient was found to be 0.9994±0.02. In order to check the selectivity of the method for pharmaceutical preparations, forced degradation studies were carried out. Valsartan was found to be stable at light and oxidation experiments. The performance of the method was validated according to the present ICH guidelines for specificity, limit of detection, limit of quantification, linearity, accuracy, precision and robustness. .The LOQ was found to be 0.26µg/ml and the LOD was found to be 0.79µg/ml.<strong> </strong>Valsartan showed good correlation coefficient in the concentration range of 20-120μg/ml. The developed method was compared statistically by applying two-way anova and student's t-test to correlate with an isocratic method and was applied to bulk drug and tablet dosage form. There was no significant difference between the two methods.<strong></strong></p><p><strong>Conclusion: </strong>The proposed method was found to be accurate, precise, sensitive and robust. Hence, it can be used successfully for the routine analysis of valsartan in pharmaceutical formulation and for analysis of stability samples obtained during accelerated stability study.</p>

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Batuk Dabhi ◽  
Hetal Jebaliya ◽  
Yashwantsinh Jadeja ◽  
Madhavi Patel ◽  
Anamik Shah ◽  
...  

A simple, precise, rapid reproducible, selective, and stability indicating reverse phase UPLC method has been developed for the estimation of dronedarone in pharmaceutical dosage form. Estimation of dronedarone hydrochloride was achieved on Acquity BEH C18 (100 mm*2.1 mm) 1.7 μm column using buffer [20 mM KH2PO4 + 1 mL Triethylamine (pH=2.5 by orthophosphoric acid)] and methanol in ratio of 40 : 60 as mobile phase at 30°C. The flow rate was 0.4 mL/min and effluents were monitored at 290 nm. The method was validated with respect to linearity, accuracy, precision, LOD, LOQ, and robustness. The method was linear over the concentration range 0.38–90 μg/mL (r2=0.999), with a limit of detection and quantification of 0.1 and 0.38 μg/mL, respectively. Dronedarone was subjected to acid and alkali hydrolysis, chemical oxidation, dry heat degradation, and photo (sunlight) degradation. The degraded product peaks were well resolved from the drug peak with significant difference in their retention time value.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Atul S. Rathore ◽  
Lohidasan Sathiyanarayanan ◽  
Kakasaheb R. Mahadik

A simple, sensitive, precise, specific and stability indicating high-performance thin-layer chromatographic (HPTLC) method for the determination of emtricitabine both in bulk drug and pharmaceutical dosage form was developed and validated. The method employed aluminium plates precoated with silica gel G60 F254 as the stationary phase. The solvent system consisted of toluene : ethyl acetate : methanol (2 : 8 : 1, v/v/v). This solvent system was found to give compact spots for emtricitabine with value . Densitometric analysis of emtricitabine was carried out in the absorbance mode at 284 nm. Linear regression analysis showed good linearity with respect to peak area in the concentration range of 30–110 ng spot−1. The method was validated for precision, limit of detection (LOD), limit of quantitation (LOQ), robustness, accuracy and specificity. Emtricitabine was subjected to acid and alkali hydrolysis, oxidation, neutral hydrolysis, photodegradation and dry heat treatment. Also the degraded products peaks were well resolved from the pure drug with significantly different values. Statistical analysis proved that the method is repeatable and specific for the estimation of the said drug. As the method could effectively separate the drugs from their degradation products, it can be employed as a stability indicating method.


Author(s):  
Jahnavi Bandla ◽  
S. Ganapaty

Objective: The objective of the present study was to develop and validate a new stability-indicating method for the quantification of lenvatinib mesylate in bulk drug and pharmaceutical dosage form using ultra performance liquid chromatography (UPLC).Methods: The optimized chromatographic conditions for elution of drug included UPLC HSS C18 (100 mm × 2.1 mm, 1.8 m) column, mixture of 0.1% orthophosphoric acid and acetonitrile (50:50 v/v%) mobile phase run on an isocratic mode at a flow rate of 0.3 mL/min, 240 nm detection wavelength, and column oven temperature maintained at 30°C.Results: The retention time for lenvatinib was found to be 1.24 min. The developed method was validated for various validation parameters in accordance with the International Conference on Harmonization guidelines. The method obeyed Beer’s law in the concentration range of 2.5– 15 μg/mL with a correlation coefficient of 0.9996. The percentage relative standard deviation and percentage recovery were determined to be 0.4 and 99.66–100.30%, respectively. The developed method was found to be accurate, precise, specific, linear, rugged, and robust. Forced degradation studies were conducted by exposing the drug to diverse stress conditions such as acidic, basic, peroxide, neutral, photolytic, and thermal conditions. The net degradation was obtained within the limits.Conclusion: The developed method for the estimation of lenvatinib can be employed to routine analysis of pharmaceutical dosage form.


2017 ◽  
Vol 16 (1) ◽  
pp. 21-28
Author(s):  
Ruchi Jain ◽  
Nilesh Jain ◽  
Deepak Kumar Jain ◽  
Avineesh Singh ◽  
Surendra Kumar Jain

A simple, inexpensive, rapid and novel stability indicating isocratic HPLC method has been developed and validated for quantitative analysis of ertapenem sodium in the bulk drug and in pharmaceutical dosage form. An isocratic separation of ertapenem sodium was achieved on Hypersil BDS C18 column (4.6 x 250 mm, 5 ? particle size) as the stationary phase with a flow rate of 1.2 ml/min and using a UV detector to monitor the eluate at 298 nm. The mobile phase consisted of acetonitrile : water (60:40v/v) and pH adjusted 2.9 by othophosphoric acid enabled separation of the drug from its degradation products. The method was validated for linearity, accuracy (recovery), precision, specificity and robustness. The linearity of the method was satisfactory over the range 2-10 ?g/ml (correlation coefficient 0.999). Recovery of ertapenem sodium from the pharmaceutical dosage form ranged from 99.97 to 103.7%. Ertapenem sodium was subjected to stress conditions [hydrolysis (acid, base), oxidation, photolysis and thermal degradation] and the samples were analyzed by this method. The forceddegradation study with ertapenem sodium showed that it was degraded under basic condition. The drug was stable under the other stress conditions investigated. Ertapenem sodium was found to be less stable in solution state, whereas it was comparatively much stable in solid state. The degradation products were well resolved from main peak. The forced degradation study prove the stability indicating power of the method and therefore, the validated method may be useful for routine analysis of ertapenem sodium as bulk drug, in respective dosage forms, for dissolution studies and as stability indicating assay method in pharmaceutical laboratories and industries.Dhaka Univ. J. Pharm. Sci. 16(1): 21-28, 2017 (June)


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Madihalli S. Raghu ◽  
Kanakapura Basavaiah ◽  
Cijo M. Xavier ◽  
Kudige N. Prashanth

A simple, precise, and accurate, and stability-indicating isocratic Ultraperformance Liquid Chromatography (UPLC) method was developed for the determination of methdilazine hydrochloride (MDH) in bulk drug and in its tablets. The use of UPLC, with a rapid 5-minute-reversed-phase isocratic separation on a 1.7 μm reversed-phase packing material to provide rapid ‘‘high throughput’’ support for MDH, is demonstrated. The method was developed using Waters Acquity BEH C18 column (100 mm × 2.1 mm, 1.7 μm) with mobile phase consisting of a mixture of potassium dihydrogenorthophosphate and 1-pentane sulphonic acid buffer of pH 4.0 and acetonitrile (60 : 40 v/v). The eluted compound was detected at 254 nm with a UV detector. The standard curve of mean peak area versus concentration showed an excellent linearity over a concentration range 0.5–80 μg mL−1 MDH with regression coefficient () value of 0.9999. The limit of detection () was 0.2 μg mL−1 and the limit of quantification () was 0.5 μg mL−1. Forced degradation of the bulk sample was conducted in accordance with the ICH guidelines. Acidic, basic, hydrolytic, oxidative, thermal, and photolytic degradations were used to assess the stability indicating power of the method. The drug was found to be stable in acidic, basic, thermal, hydrolytic, and photolytic stress conditions and showed slight degradation in oxidative stress condition.


Author(s):  
MADHURIMA BASAK ◽  
Santhosh Reddy Gouru ◽  
Animesh Bera ◽  
Krishna veni Nagappan

Objective: The present study aims at developing an accurate precise, rapid and sensitive Reverse Phase High-Performance Liquid Chromatography (RP-HPLC) method for assessing Empagliflozin in bulk drug and in the pharmaceutical dosage form. Methods: The proposed method employs a Reverse Phase Shim Pack C18 column (250 mm × 4.6 mm id; 5 µm) using a mobile phase comprising of acetonitrile and water in the ratio of 60:40 v/v flushed at a flow rate of 1 ml/min. The eluents were monitored at 223 nm. Results: Empagliflozin was eluted at a retention time of 5.417 min and established a co-relation co-efficient (R2>0.999) over a concentration ranging from 0.0495-100µg/ml. Percentage recovery was obtained between 98-102% which indicated that the method is accurate. The Limit of Detection (LOD) and Limit of Quantitation (LOQ) were found at 0.0125µg/ml and 0.0495µg/ml, respectively. Conclusion: An RP-HPLC method which was relatively simple, accurate, rapid and precise was developed and its validation was performed for the quantitative analysis of empagliflozin in bulk and tablet dosage form (10 and 25 mg) in accordance to International Conference of Harmonization (ICH) Q2 (R1) guidelines. The proposed method may aid in routinely analyzing empagliflozin in pharmaceuticals.


2021 ◽  
Vol 12 (2) ◽  
pp. 168-178
Author(s):  
Mohamed Rizk ◽  
Ali Kamal Attia ◽  
Heba Yosry Mohamed ◽  
Mona Elshahed

A sensitive, accurate, and precise liquid chromatographic method has been developed and validated for the determination of Linagliptin (LNG) and Empagliflozin (EMP) in their combined tablets. Chromatographic separation was carried out on ODS-3 Inertsil® C18 column (150×4.6 mm, 5 µm). The mobile phase A (consisting of 0.30% Triethyl amine buffer (TEA) at pH = 4.5, adjusted using ortho-phosphoric acid); the mobile phase B (consisting of acetonitrile) was pumped through the column whose temperature was maintained at 40 °C, with a flow rate 1.7 mL/min, using gradient elution from 0-3 min A:B (75:25, v:v), then from 3-6 min the ratio changed to be A:B (60:40, v:v). Fluorescence detection (FLD) was performed at 410 nm after excitation at 239 nm. Acceptable linearity, accuracy and precision values of the proposed method were found over the concentration ranges of 0.5-15 µg/mL for LNG and 1.0-30 µg/mL for EMP with correlation coefficients of 0.9997 and 0.9998 in the case of LNG and EMP, respectively. The recoveries and relative standard deviations percentages were found in the following ranges: 98.56-101.85 and 0.53-1.52% for LNG and 98.00-101.95 and 0.31-1.05% for EMP. The detection and quantification limits were 0.15 and 0.45 µg/mL for LNG and 0.22 and 0.67 µg/mL for EMP. The optimized method was validated and proved to be specific, robust, accurate and reliable for the determination of the drugs in pure form or in their combined pharmaceutical preparations. No significant difference was found regarding accuracy and precision upon statistical comparison between the obtained results of the proposed method and those of the reported method. Furthermore, the proposed method is proved to be a stability-indicating assay after exposure of the studied drugs to variable forced degradation parameters, such as acidic, alkaline and oxidative conditions, according to the recommendations of the International Conference on Harmonization guidelines. The simplicity and selectivity of the proposed method allows its use in quality control laboratories.


2019 ◽  
Vol 57 (7) ◽  
pp. 644-652 ◽  
Author(s):  
Anjali M Thakkar ◽  
Usmangani K Chhalotiya ◽  
Nikunj Parekh ◽  
Jaineel V Desai ◽  
Dimal A Shah

Abstract A sensitive, selective and precise high performance thin layer chromatographic method has been developed and validated for the quantification of Brexpiprazole in bulk drug and in pharmaceutical dosage form. The method employed HPTLC aluminum plates (pre-coated with silica gel 60 F254) as stationary phase while n-butanol was used as mobile phase. The Rf value of Brexpiprazole was observed to be 0.38. The densitometric analysis was carried out in absorbance mode at 215 nm. The linear regression analysis data for the calibration plots showed a good linear relationship for Brexpiprazole over a concentration range of 200–1,600 ng band−1. The limit of detection and limit of quantification for Brexpiprazole was found to be 66 and 200 ng band−1. To find out the possible degradation pathway, forced degradation studies were performed. The stock solutions of Brexpiprazole (1,000 μg mL−1) were subjected to acid and alkali hydrolysis, chemical oxidation, dry heat degradation and photo degradation. The drug was found to be susceptible to acid and alkali hydrolysis, chemical oxidation, photo degradation and dry heat. The degraded product peaks were well resolved from the pure drug peak with significant difference in their Rf values. Stressed samples were analyzed using developed HPTLC method. The proposed method was validated with respect to linearity, accuracy, precision and robustness. The method was successfully applied to the estimation of Brexpiprazole in marketed formulation and determination of content uniformity of tablet formulation. Statistical analysis showed that the method is repeatable, selective, and precise.


2003 ◽  
Vol 29 (10) ◽  
pp. 1119-1126 ◽  
Author(s):  
Himani Agrawal ◽  
K. R. Mahadik ◽  
A. R. Paradkar ◽  
Neeraj Kaul

Sign in / Sign up

Export Citation Format

Share Document