scholarly journals Comparative Study of the Efficiency of Sodium Hydroxide, Sodium Hypochlorite and Sodium Chloride as Extractors of Residual Silver From X-Ray Plates and Graphical Effluents by the Volhard Method

Author(s):  
Carlos Alberto Paraguassu-Chaves ◽  
Cláudio José Pinto de Faria ◽  
Filomena Maria Minetto Brondani ◽  
Vera Lúcia Matias Gomes Geron ◽  
Nelson Pereira Silva Junior ◽  
...  
1995 ◽  
Vol 30 (2) ◽  
pp. 339-361 ◽  
Author(s):  
Tilak V. Bommaraju

Abstract One of the end uses of chlorine and sodium hydroxide, both produced by the electrolysis of aqueous sodium chloride, is in the manufacture of sodium hypochlorite, commonly called liquid “bleach.” This article outlines the methods of manufacturing liquid bleach, including the factors involved in the selection of materials of construction for handling chlorine, sodium hydroxide and sodium hypochlorite. Experimental results were presented addressing the stability of sodium hypochlorite as influenced by temperature and pH, and by anionic impurities such as Cl−, ClO3−, CO3− and SO4−, and cationic impurities which include Ca++, Mg++, Cu++, Ni++ and Fe++. Various techniques were also outlined to minimize the formation of chlorates during storage and bleaching and to improve the quality and stability of sodium hypochlorite.


2007 ◽  
Vol 364-366 ◽  
pp. 1032-1036
Author(s):  
Wen Li Chen ◽  
Quan Zhou ◽  
Da Xing

AflatoxinB1 was extracted from rice contaminated artificially with Aspergillus flavus by using methanol-water (50:50 v/v). As for experiment group, sodium chloride was added into the extracted solution of AfB1, the excitation wavelength of 365 nm under the fluorescence mode, and the emission spectrum peak at 440nm were observed. To study the detoxification of AflatoxinB1 in several alkaline solutions, the solution of alkaline with difference concentration was added into the solution of AfB1 respectively. The results showed that all of three alkaline solutions could decrease the 440nm emission spectrum peak of solution of AfB1 in varying degrees, the effect to decrease emission spectrum peak of AfB1 was very obvious in sodium hypochlorite (NaClO), and sodium hydroxide (NaOH) took second place, whereas in ammonia (NH3·H2O), the effect was the weakest among three alkaline solutions. Moreover, the effects were different in the same alkaline solutions with different concentration, as hydrochloric acid (HCl) in low concentration was added to this complex AfB1 alkaline solutions, detoxification efficacy of AfB1 were found to be obviously increased. It was concluded that the detoxification of AflatoxinB1 may be affected by alkaline solutions according to their concentration and be degraded greatly by acid addition.


Author(s):  
Russell L. Steere ◽  
Eric F. Erbe

Thin sheets of acrylamide and agar gels of different concentrations were prepared and washed in distilled water, cut into pieces of appropriate size to fit into complementary freeze-etch specimen holders (1) and rapidly frozen. Freeze-etching was accomplished in a modified Denton DFE-2 freeze-etch unit on a DV-503 vacuum evaporator.* All samples were etched for 10 min. at -98°C then re-cooled to -150°C for deposition of Pt-C shadow- and C replica-films. Acrylamide gels were dissolved in Chlorox (5.251 sodium hypochlorite) containing 101 sodium hydroxide, whereas agar gels dissolved rapidly in the commonly used chromic acid cleaning solutions. Replicas were picked up on grids with thin Foimvar support films and stereo electron micrographs were obtained with a JEM-100 B electron microscope equipped with a 60° goniometer stage.Characteristic differences between gels of different concentrations (Figs. 1 and 2) were sufficiently pronounced to convince us that the structures observed are real and not the result of freezing artifacts.


Author(s):  
F. Mostefa ◽  
Nasr Eddine Bouhamou ◽  
H.A. Mesbah ◽  
Salima Aggoun ◽  
D. Mekhatria

This work aims to study the feasibility of making a geopolymer cement based on dredged sediments, from the Fergoug dam (Algeria) and to evaluate their construction potential particularly interesting in the field of special cementitious materials. These sediments due to their mineralogical composition as aluminosilicates; are materials that can be used after heat treatment. Sedimentary clays were characterized before and after calcination by X-ray diffraction, ATG / ATD, spectroscopy (FTIR) and XRF analysis. The calcination was carried out on the raw material sieved at 80 μm for a temperature of 750 ° C, for 3.4 and 5 hours. The reactivity of the calcined products was measured using isothermal calorimetric analysis (DSC) on pastes prepared by mixing an alkaline solution of sodium hydroxide (NaOH) 8 M in an amount allowing to have a Na / Al ratio close to 1 (1: 1). Also, cubic mortar samples were prepared with a ratio L / S: 0.8, sealed and cured for 24 hours at 60 ° C and then at room temperature until the day they were submited to mechanical testing. to check the extent of geopolymerization. The results obtained allowed to optimize the calcination time of 5 hours for a better reactivity of these sediments, and a concentration of 8M of sodium hydroxide and more suitable to have the best mechanical performances.


Sign in / Sign up

Export Citation Format

Share Document