Bacteriophage as an antibacterial agent: a patent perspective

2021 ◽  
Author(s):  
Prachitee Pathak-Vaidya ◽  
Surbhi Sharma ◽  
Manasi Telang

The present review encompasses a patent landscape on bacteriophage as an antimicrobial agent and one of the alternatives to combat antibiotic resistance in bacteria. This study gives a perspective on use of bacteriophages in various industries such as healthcare, food safety and animal and plant protection. Patenting activity was noted for all the antibiotic-resistant bacterial pathogens listed in the ‘critical’ category by the WHO. Broadly, claims of the analyzed patents were directed toward bacteriophage, composition/formulation containing phage, phage proteins and various methods of using or producing phage. The challenges to approval of phage therapy in clinical use may be overcome with the help of focused research and modification of the regulatory guidelines for phage therapy.

2019 ◽  
Vol 15 (3) ◽  
pp. 20180895 ◽  
Author(s):  
Lauri Mikonranta ◽  
Angus Buckling ◽  
Matti Jalasvuori ◽  
Ben Raymond

Phage therapy is attracting growing interest among clinicians as antibiotic resistance continues becoming harder to control. However, clinical trials and animal model studies on bacteriophage treatment are still scarce and results on the efficacy vary. Recent research suggests that using traditional antimicrobials in concert with phage could have desirable synergistic effects that hinder the evolution of resistance. Here, we present a novel insect gut model to study phage–antibiotic interaction in a system where antibiotic resistance initially exists in very low frequency and phage specifically targets the resistance bearing cells. We demonstrate that while phage therapy could not reduce the frequency of target bacteria in the population during positive selection by antibiotics, it alleviated the antibiotic induced blooming by lowering the overall load of resistant cells. The highly structured gut environment had pharmacokinetic effects on both phage and antibiotic dynamics compared with in vitro : antibiotics did not reduce the overall amount of bacteria, demonstrating a simple turnover of gut microbiota from non-resistant to resistant population with little cost. The results imply moderate potential for using phage as an aid to target antibiotic resistant gut infections, and question the usefulness of in vitro inferences.


2020 ◽  
Vol 4 (12) ◽  
pp. 01-05
Author(s):  
G. Sunil paul

within the bacteria. Phage therapy is the clinical use of these bacteriophages to treat infections caused by superbugs (bacteria that have acquired resistance against antibiotics). Phages when administered in to bacteria, causes the lysis of the bacterial cells in the lytic phase of phage life cycle. Phage therapy has acquired its importance in the recent years after their successful use in managing some life threatening infections and helped in saving lives. Phage therapy is currently being used as the antimicrobial therapy in some western countries. this paper mainly discusses about using phage therapy in treating infections caused by superbugs, and also discusses on what measures should be taken by different countries to successfully introduce the phage therapy in clinical use. Apart from this phage therapy has got some disadvantages which shows that phage therapy can never be an effective alternative for antibiotics. We conclude that phage therapy can be the best choice for treating infections caused by superbugs, where antibiotics can’t work but can’t be used again once used before in a particular patient.


2020 ◽  
Vol 42 (6) ◽  
pp. 6-11
Author(s):  
Michael J Love ◽  
Renwick C J Dobson ◽  
Craig Billington

The growing prevalence of antibiotic resistance is a global crisis. It is predicted that by 2050, antibiotic resistance-related deaths will exceed by 10 million per year. Thus, there is an urgent need for alternative strategies that can either replace or supplement antibiotic use. Bacteriophages and their encoded lytic proteins, called endolysins, have both shown promise as antibiotic alternatives. Bacteriophages were first investigated as therapeutics nearly a century ago, but the success of antibiotics led to phage therapy being largely abandoned in Western medicine until recently. While sporadic reports of life-saving successes in the ad hoc use of phage therapy have emerged, properly designed, robust clinical trials and clear regulatory guidelines are required before the true potential of phage therapy can be realized. In addition, despite endolysin research still being in its infancy, the early successes of endolysin-based therapeutics already entering clinical trials are an exciting glimpse into the future. No stone can be left unturned in the discovery and development of novel therapeutics if we are to ensure a future supply of effective treatments for bacterial infections.


2021 ◽  
Author(s):  
Chirag Choudhary ◽  

The idea of using a virus to kill bacteria may seem counterintuitive, but it may be the future of treating bacterial infections. Before the COVID-19 pandemic, one of the most frightening biological agents were so-called “superbugs” – antibiotic resistant bacteria – which could not be treated with conventional therapeutics. When antibiotics were first developed, they were hailed as a panacea. A panacea they were not.


2018 ◽  
Author(s):  
Lauri Mikonranta ◽  
Angus Buckling ◽  
Matti Jalasvuori ◽  
Ben Raymond

Phage therapy is attracting growing interest among clinicians as antibiotic resistance continues becoming harder to control. However, clinical trials and animal model studies on bacteriophage treatment are still scarce and results on the efficacy vary. Recent research suggests that using traditional antimicrobials in concert with phage could have desirable synergistic effects that hinder the evolution of resistance. Here, we present a novel insect gut model to study phage-antibiotic interaction in a system where antibiotic resistance initially exists in very low frequency and phage specifically targets the resistance bearing cells. We demonstrate that while phage therapy could not reduce the frequency of target bacteria in the population during positive selection by antibiotics, it alleviated the antibiotic induced blooming by lowering the overall load of resistant cells. The highly structured gut environment had pharmacokinetic effects on both phage and antibiotic dynamics compared to in vitro: antibiotics did not reduce the overall amount of bacteria, demonstrating a simple turnover of gut flora from non-resistant to resistant population with little cost. The results imply moderate potential for using phage as an aid to target antibiotic resistant gut infections, and question the usefulness of in vitro inferences.


Author(s):  
Maria Vladimirovna Kuchmina ◽  
A. Yu Turkina ◽  
Yu. O Paramonov

The article is devoted to the possibilities of using bacteriophages in dentistry. The main characteristics of bacteriophages and mechanisms of their interaction with a bacterial cell as well as the data of microbiological studies and the results of clinical use of bacteriophages in periodontal diseases are discussed. Bacteriophages have been shown to be effective against periodontopathogenic microorganisms, including antibiotic resistant bacteria in vitro and in vivo. There were reflected the advantages and disadvantages of phage therapy, the main of which for today is a small experience of clinical use of this method. Objective. To analyze the data of foreign and domestic literature and publications in the field of phagotherapy effectiveness in dentistry.


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 175 ◽  
Author(s):  
Szaleniec ◽  
Gibała ◽  
Pobiega ◽  
Parasion ◽  
Składzień ◽  
...  

The chronically inflamed mucosa in patients with chronic rhinosinusitis (CRS) can additionally be infected by bacteria, which results in an acute exacerbation of the disease (AECRS). Currently, AECRS is universally treated with antibiotics following the guidelines for acute bacterial rhinosinusitis (ABRS), as our understanding of its microbiology is insufficient to establish specific treatment recommendations. Unfortunately, antibiotics frequently fail to control the symptoms of AECRS due to biofilm formation, disruption of the natural microbiota, and arising antibiotic resistance. These issues can potentially be addressed by phage therapy. In this study, the endoscopically-guided cultures were postoperatively obtained from 50 patients in order to explore the microbiology of AECRS, evaluate options for antibiotic treatment, and, most importantly, assess a possibility of efficient phage therapy. Staphylococcus aureus and coagulase-negative staphylococci were the most frequently isolated bacteria, followed by Haemophilus influenzae, Pseudomonas aeruginosa, and Enterobacteriaceae. Alarmingly, mechanisms of antibiotic resistance were detected in the isolates from 46% of the patients. Bacteria not sensitive to amoxicillin were carried by 28% of the patients. The lowest rates of resistance were noted for fluoroquinolones and aminoglycosides. Fortunately, 60% of the patients carried bacterial strains that were sensitive to bacteriophages from the Biophage Pharma collection and 81% of the antibiotic-resistant strains turned out to be sensitive to bacteriophages. The results showed that microbiology of AECRS is distinct from ABRS and amoxicillin should not be the antibiotic of first choice. Currently available bacteriophages could be used instead of antibiotics or as an adjunct to antibiotics in the majority of patients with AECRS.


2018 ◽  
Author(s):  
Jorge A. Moura de Sousa ◽  
Ahlam Alsaadi ◽  
Jakob Haaber ◽  
Hanne Ingmer ◽  
Eduardo P.C. Rocha

ABSTRACTBacteriophages shape microbial communities by predating on them and by accelerating their adaptation through horizontal gene transfer. The former is the basis of phage therapy, whereas the latter drives the evolution of numerous bacterial pathogens. We present a novel computational approach (eVIVALDI – eco-eVolutionary mIcrobial indiViduAL-baseD sImulations) to study phage-bacteria ecological interactions that integrates a large number of processes, including population dynamics, environmental structure, genome evolution, and phage-mediated horizontal transfer. We validate and illustrate the relevance of the model by focusing on three specific questions: the ecological interactions between bacteria and virulent phage during phage and antibiotic therapy, the role of prophages as competitive weapons, and how autotransduction facilitates bacterial acquisition of antibiotic resistance genes upon lysis of antibiotic resistant competitors. Our model recapitulates experimental and theoretical observations and provides novel insights. In particular, we find that environmental structure has a strong effect on community dynamics and evolutionary outcomes in all three case studies. Strong environmental structure, relative to well-mixed environments and especially if antibiotics are heterogeneously distributed, enhances the rate of acquisition of resistance to both phages and antibiotics, and leads to more accurate predictions of the dynamics of lysogen invasion in the gastrointestinal tract. We predicted the co-existence of invaders and resident lysogens in autotransduction under a range of parameters, and validated this key prediction experimentally. By linking ecological and evolutionary dynamics, our modelling approach sheds light on the factors that influence the dynamics of phage-bacteria interactions. It can also be expanded to put forward novel hypotheses, facilitating the design of phage therapy treatments and the assessment of the role of phages in the spread of antibiotic resistance.AUTHOR SUMMARYIn the face of a growing threat of antibiotic resistant bacteria, bacteriophages have re-emerged as a potential alternative to clinical treatments of infections, as they are efficient bacterial predators. However, bacteriophages can also promote, through a mechanism called transduction, the dissemination of adaptive traits between bacteria, including antibiotic resistance genes. Importantly, these two types of interactions (predation and transduction) can co-occur, which creates difficulties in predicting their outcome. We have developed eVIVALDI (eco-eVolutionary mIcrobial indiViduAL-baseD sImulations), a computational model that allows the simulation of microbial communities with a focus on the mechanisms involved in phage-bacteria interactions, across time and in different types of environments. eVIVALDI can be used to understand the conditions where phages are more likely to be successfully used to eliminate bacteria or, in the other hand, the conditions where they increase the probability of dissemination of adaptive traits. Our research highlights the importance of considering the diverse ways that phage and bacteria interact, and the relevant ecological conditions where these interactions take place, to understand how bacteriophages shape microbial communities and how they can be used as a clinical tool.


2019 ◽  
pp. 48-54
Author(s):  
Duy Binh Nguyen ◽  
Trung Tien Phan ◽  
Trong Hanh Hoang ◽  
Van Tuan Mai ◽  
Xuan Chuong Tran

Sepsis is a serious bacterial infection. The main treatment is using antibiotics. However, the rate of antibiotic resistance is very high and this resistance is related to the outcome of treatment. Objectives: To evaluate the situation of antibiotic resistance of some isolated bacteria in sepsis patients treated at Hue Central Hospital; to evaluate the relationship of antibiotic resistance to the treatment results in patients with sepsis. Subjects and methods: prospective study of 60 sepsis patients diagnosed according to the criteria of the 3rd International Consensus-Sepsis 3 and its susceptibility patterns from April 2017 to August 2018. Results and Conclusions: The current agents of sepsis are mainly S. suis, Burkhoderiae spp. and E. coli. E. coli is resistant to cephalosporins 3rd, 4th generation and quinolone group is over 75%; resistance to imipenem 11.1%; the ESBL rate is 60%. S. suis resistant to ampicilline 11.1%; no resistance has been recorded to ceftriaxone and vancomycine. Resistance of Burkholderiae spp. to cefepime and amoxicillin/clavulanic acid was 42.9% and 55.6%, resistant to imipenem and meropenem is 20%, resistance to ceftazidime was not recorded. The deaths were mostly dued to E. coli and K. pneumoniae. The mortality for patients infected with antibiotic-resistant bacteria are higher than for sensitive groups. Key words: Sepsis, bacterial infection, antibiotics


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 874
Author(s):  
Periyasamy Sivalingam ◽  
John Poté ◽  
Kandasamy Prabakar

Over the past decades, the rising antibiotic resistance bacteria (ARB) are continuing to emerge as a global threat due to potential public health risk. Rapidly evolving antibiotic resistance and its persistence in the environment, have underpinned the need for more studies to identify the possible sources and limit the spread. In this context, not commonly studied and a neglected genetic material called extracellular DNA (eDNA) is gaining increased attention as it can be one of the significant drivers for transmission of extracellular ARGS (eARGs) via horizontal gene transfer (HGT) to competent environmental bacteria and diverse sources of antibiotic-resistance genes (ARGs) in the environment. Consequently, this review highlights the studies that address the environmental occurrence of eDNA and encoding eARGs and its impact on the environmental resistome. In this review, we also brief the recent dedicated technological advancements that are accelerating extraction of eDNA and the efficiency of treatment technologies in reducing eDNA that focuses on environmental antibiotic resistance and potential ecological health risk.


Sign in / Sign up

Export Citation Format

Share Document