scholarly journals Inhibition of p38 MAPK in the brain through nasal administration of p38 inhibitor loaded in chitosan nanocapsules

Nanomedicine ◽  
2019 ◽  
Vol 14 (18) ◽  
pp. 2409-2422 ◽  
Author(s):  
Álvaro Casadomé-Perales ◽  
Laura De Matteis ◽  
Maria Alleva ◽  
Cristina Infantes-Rodríguez ◽  
Irene Palomares-Pérez ◽  
...  

Aim: To determine whether a p38 MAPK inhibitor incorporated into nanoemulsion-based chitosan nanocapsules can reduce the activity of this kinase in the brain through their nasal administration in mice. Materials & methods: We selected the p38 MAPK inhibitor PH797804, an ATP-competitive inhibitor of p38α encapsulated in nanoemulsion-based chitosan nanocapsules. Biological effect was evaluated in microglial and neuronal cells in vitro and in ex vivo and in vivo systems, in a mouse model of Alzheimer’s disease. Results: Encapsulated inhibitor retains enzymatic inhibitory activity and tissue penetration capacity in vitro, ex vivo and in vivo. Conclusion: Nasal administration of chitosan nanocapsules can be an effective approach for brain-restricted reduction of p38 MAPK activity, thus reducing the side effects of systemic administration.

2006 ◽  
Vol 104 (6) ◽  
pp. 1266-1273 ◽  
Author(s):  
Philipp Lirk ◽  
Ingrid Haller ◽  
Robert R. Myers ◽  
Lars Klimaschewski ◽  
Yi-Chuan Kau ◽  
...  

Background Local anesthetic-induced direct neurotoxicity (paresthesia, failure to regain normal sensory and motor function) is a potentially devastating complication of regional anesthesia. Local anesthetics activate the p38 mitogen-activated protein kinase (MAPK) system, which is involved in apoptotic cell death. The authors therefore investigated in vitro (cultured primary sensory neurons) and in vivo (sciatic nerve block model) the potential neuroprotective effect of the p38 MAPK inhibitor SB203580 administered together with a clinical (lidocaine) or investigational (amitriptyline) local anesthetic. Methods Cell survival and mitochondrial depolarization as marker of apoptotic cell death was assessed in rat dorsal root ganglia incubated with lidocaine or amitriptyline either with or without the addition of SB203580. Similarly, in a sciatic nerve block model, the authors assessed wallerian degeneration by light microscopy to detect a potential mitigating effect of MAPK inhibition. Results Lidocaine at 40 mm/approximately 1% and amitriptyline at 100 microm reduce neuron count, but coincubation with the p38 MAPK inhibitor SB203580 at 10 mum significantly reduces cytotoxicity and the number of neurons exhibiting mitochondrial depolarization. Also, wallerian degeneration and demyelination induced by lidocaine (600 mm/approximately 15%) and amitriptyline (10 mm/approximately 0.3%) seem to be mitigated by SB203580. Conclusions The cytotoxic effect of lidocaine and amitriptyline in cultured dorsal root ganglia cells and the nerve degeneration in the rat sciatic nerve model seem, at least in part, to be mediated by apoptosis but seem efficiently blocked by an inhibitor of p38 MAPK, making it conceivable that coinjection might be useful in preventing local anesthetic-induced neurotoxicity.


2011 ◽  
Author(s):  
Courtney Tate ◽  
Wayne Blosser ◽  
Lisa Wyss ◽  
Susan Pratt ◽  
Julie Stewart ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
William J. Behof ◽  
Clayton A. Whitmore ◽  
Justin R. Haynes ◽  
Adam J. Rosenberg ◽  
Mohammed N. Tantawy ◽  
...  

AbstractErgothioneine (ERGO) is a rare amino acid mostly found in fungi, including mushrooms, with recognized antioxidant activity to protect tissues from damage by reactive oxygen species (ROS) components. Prior to this publication, the biodistribution of ERGO has been performed solely in vitro using extracted tissues. The aim of this study was to develop a feasible chemistry for the synthesis of an ERGO PET radioligand, [11C]ERGO, to facilitate in vivo study. The radioligand probe was synthesized with identical structure to ERGO by employing an orthogonal protection/deprotection approach. [11C]methylation of the precursor was performed via [11C]CH3OTf to provide [11C]ERGO radioligand. The [11C]ERGO was isolated by RP-HPLC with a molar activity of 690 TBq/mmol. To demonstrate the biodistribution of the radioligand, we administered approximately 37 MBq/0.1 mL in 5XFAD mice, a mouse model of Alzheimer’s disease via the tail vein. The distribution of ERGO in the brain was monitored using 90-min dynamic PET scans. The delivery and specific retention of [11C]ERGO in an LPS-mediated neuroinflammation mouse model was also demonstrated. For the pharmacokinetic study, the concentration of the compound in the serum started to decrease 10 min after injection while starting to distribute in other peripheral tissues. In particular, a significant amount of the compound was found in the eyes and small intestine. The radioligand was also distributed in several regions of the brain of 5XFAD mice, and the signal remained strong 30 min post-injection. This is the first time the biodistribution of this antioxidant and rare amino acid has been demonstrated in a preclinical mouse model in a highly sensitive and non-invasive manner.


2021 ◽  
Vol 2021 (9) ◽  
pp. pdb.prot106872
Author(s):  
Ayako Yamaguchi

Understanding the neural basis of behavior is a challenging task for technical reasons. Most methods of recording neural activity require animals to be immobilized, but neural activity associated with most behavior cannot be recorded from an anesthetized, immobilized animal. Using amphibians, however, there has been some success in developing in vitro brain preparations that can be used for electrophysiological and anatomical studies. Here, we describe an ex vivo frog brain preparation from which fictive vocalizations (the neural activity that would have produced vocalizations had the brain been attached to the muscle) can be elicited repeatedly. When serotonin is applied to the isolated brains of male and female African clawed frogs, Xenopus laevis, laryngeal nerve activity that is a facsimile of those that underlie sex-specific vocalizations in vivo can be readily recorded. Recently, this preparation was successfully used in other species within the genus including Xenopus tropicalis and Xenopus victorianus. This preparation allows a variety of techniques to be applied including extracellular and intracellular electrophysiological recordings and calcium imaging during vocal production, surgical and pharmacological manipulation of neurons to evaluate their impact on motor output, and tract tracing of the neural circuitry. Thus, the preparation is a powerful tool with which to understand the basic principles that govern the production of coherent and robust motor programs in vertebrates.


2004 ◽  
Vol 18 (6) ◽  
pp. 433-440 ◽  
Author(s):  
Yukihiro Yoshimura ◽  
Gentian Kristo ◽  
Byron J. Keith ◽  
Salik A. Jahania ◽  
Robert M. Mentzer ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2037 ◽  
Author(s):  
Tavakolian-Ardakani ◽  
Hosu ◽  
Cristea ◽  
Mazloum-Ardakani ◽  
Marrazza

Neurotransmitters are endogenous chemical messengers which play an important role in many of the brain functions, abnormal levels being correlated with physical, psychotic and neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's disease. Therefore, their sensitive and robust detection is of great clinical significance. Electrochemical methods have been intensively used in the last decades for neurotransmitter detection, outclassing more complicated analytical techniques such as conventional spectrophotometry, chromatography, fluorescence, flow injection, and capillary electrophoresis. In this manuscript, the most successful and promising electrochemical enzyme-free and enzymatic sensors for neurotransmitter detection are reviewed. Focusing on the activity of worldwide researchers mainly during the last ten years (2010–2019), without pretending to be exhaustive, we present an overview of the progress made in sensing strategies during this time. Particular emphasis is placed on nanostructured-based sensors, which show a substantial improvement of the analytical performances. This review also examines the progress made in biosensors for neurotransmitter measurements in vitro, in vivo and ex vivo.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
SAYAKA SUGIOKA ◽  
Yukiko Kato ◽  
Akira Ishii ◽  
Keita Mori ◽  
Keisuke Osaki ◽  
...  

Abstract Background and Aims Previously, we demonstrated that uninephrectomized aldosterone-infused, high salt-fed podocyte-specific guanylyl cyclase-A (natriuretic peptide receptor 1) conditional KO (pod-GC-A cKO) mice exhibited glomerular injury and that pharmacological inhibition of p38 MAPK ameliorates podocyte damage. However, the effects of genetic deletion of p38 MAPK in podocytes of pod-GC-A cKO mice have been unclarified. Method We generated p38 MAPK(fl/fl);Nephrin-Cre (pod-p38 MAPK cKO) mice and p38 MAPK(fl/fl);GC-A(fl/fl);Nephrin-Cre (pod-p38MAPK/GC-A DKO) mice. For induction of glomerular injury, we treated them with aldosterone and high salt at 2 months of age for 3 weeks without nephrectomy (B-ALDO). In vitro, we examined the effect of p38 MAPK inhibitor in cultured human podocytes transfected with GC-A siRNA. Results B-ALDO-treated pod-p38 MAPK/GC-A DKO mice resulted in significant elevation of serum Cr (0.29 ± 0.04 mg/dl), massive albuminuria (42,660 ± 20,200 μg/mgCr) and severe foot process effacement in addition to intracapillary fibrin thrombi which indicated endothelial damage. Vehicle-treated DKO mice, B-ALDO-treated pod-GC-A cKO mice, and B-ALDO-treated pod-p38 MAPK cKO showed normal serum Cr levels (0.14 ± 0.01, 0.18 ± 0.02, 0.20 ± 0.01 mg/dl, respectively), mild increase of albuminuria (223 ± 6.5, 1,496 ± 592, 649 ± 303 μg/mgCr, respectively) and only segmental foot process effacement. Blood pressure was not elevated in either mutant mice compared with that of B-ALDO control mice. Furthermore, glomerular mRNA expressions of MCP-1, PAI-1, and FN were upregulated and that of VEGF-A was downregulated in DKO mice. In vitro, suppression of GC-A mRNA by siRNA in combination with p38 MAPK inhibitor downregulated VEGF mRNA in human cultured podocytes. Our previous works showed that pharmacological inhibition of p38 MAPK in the whole body ameliorated podocyte damage, whereas our current result showed that genetic deletion of p38 MAPK in podocytes aggravated renal injury. In order to explain the discrepancy in these results, we added an analysis of podocyte specific GC-A fl/fl p38 fl/+ cKO mice. Pod GC-A fl/fl p38 fl/+ cKO mice exhibited considerably milder renal damage than pod GC-A fl/fl p38 fl/fl double cKO mice. Conclusion Genetic complete p38 MAPK deletion in GC-A-nul podocytes exacerbated aldosterone-induced glomerular endothelial cell injury as well as podocytes, and resulted in renal dysfunction, probably through VEGF downregulation, whereas partial p38 MAPK inhibition in podocytes ameliorated aldosterone-induced glomerular injury in pod-GC-A cKO mice. These results suggest a certain level of p38 MAPK in podocytes is necessary to protect endothelial and epithelial cells from aldosterone-induced renal injury.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Najia Xu ◽  
Mokarram Hossain ◽  
Lixin Liu

p38 mitogen-activated protein kinase (MAPK) signalling is critical in the pathophysiology of a variety of inflammatory processes. Leukocyte recruitment to the site of inflammation is a multistep process governed by specific signalling cascades. After adhesion in the lumen, many leukocytes crawl to optimal sites at endothelial junctions and transmigrate to extravascular tissue in a Mac-1-dependent manner. The signalling mechanisms that regulate postadhesion steps of intraluminal crawling, transmigration, and chemotaxis in tissue remain incompletely understood. The present study explored the effect of p38 MAPK inhibitor SB203580 on various parameters of neutrophil recruitment triggered by chemokine KC (CXCL1) gradient. Neutrophil-endothelial interactions in microvasculature of murine cremaster muscle were determined using intravital microscopy and time-lapsed video analysis. SB203580 (100 nM) did not change leukocyte rolling but significantly attenuated neutrophil adhesion, emigration, and transmigration and impaired the initiation of neutrophil crawling and transmigration. In response to KC chemotactic gradient, SB203580 significantly reduced the velocity of migration and chemotaxis index of neutrophils in tissue. The upregulation of Mac-1 expression in neutrophils stimulated by KC was significantly blunted by SB203580in vitro. Collectively, our findings demonstrate that pharmacological suppression of p38 MAPK significantly impairs multiple steps of neutrophil recruitmentin vivo.


Sign in / Sign up

Export Citation Format

Share Document