scholarly journals Fluorescein sodium loaded by polyethyleneimine for fundus fluorescein angiography improves adhesion

Nanomedicine ◽  
2019 ◽  
Vol 14 (19) ◽  
pp. 2595-2611 ◽  
Author(s):  
Wenting Cai ◽  
Meixiu Chen ◽  
Jiaqi Fan ◽  
Huizi Jin ◽  
Donghui Yu ◽  
...  

Aim: To improve the retention of fluorescein sodium (FS) as a kind of clinical contrast agent for fundus fluorescein angiography (FFA). Materials & methods: Polyethyleneimine (PEI) was designed to synthesize PEI–NHAc–FS nanoparticles (NPs), and the formed NPs were characterized by both physicochemical properties and their effects on FFA. Results: Compared with free FS, PEI–NHAc–FS NPs showed similar optical performance, and could obviously reduce cellular adsorption and uptake both in vitro and in vivo, which could promote the metabolism of NPs in ocular blood vessels. Conclusion: PEI–NHAc–FS NPs represent a smart nanosize fluorescence contrast agent, which hold promising potential for clinical FFA diagnosis, therapy and research work.

2020 ◽  
Vol 16 (8) ◽  
pp. 1147-1156
Author(s):  
Ruchi Singh ◽  
Syed M. Hasan ◽  
Amit Verma ◽  
Sanjay K. Panda

Background: A plant is a reservoir of potentially useful active chemical entities which act as drugs as well as intermediates for the discovery of newer molecules and provide newer leads for modern drug synthesis. The demand for new compounds in the field of medicine and biotechnology is centuries old and with a rise in chronic diseases and resistance to existing drugs in the field of anti-infective agents, the chemicals obtained from plant sources have been an area of attraction. The whole plant has possessed multiple pharmacological activities. This is scientifically established by in-vivo and in-vitro studies. Methods: Various electronic databases such as PubMed, Science Direct, Scopus and Google were searched to collect the data of the present review. All the collected information is categorized into different sections as per the aim of the paper. Results: Fifty-six research and review papers have been studied and were included in this review article. After a detailed study, we provide a significant description of various phytochemicals present in Nyctanthes arbor-tristis Linn., which is responsible for various pharmacological activities. Twenty of studied articles gives a general introduction and ethnobotanical information about the plant, two papers contained microscopic detail of leaf and fruit. Twenty papers contained information about the phytoconstituents present in different parts of Nyctanthes arbor-tristis plant and fourteen articles reported pharmacological activities like antioxidant, anti-inflammatory, antiarthritic, antimicrobial and immunobiotic activity. Conclusion: This review explores the published research work comprising the ethnobotanical description of the subjected plant, distribution, phytochemical profile, and arthritis-related pharmacological activities.


2021 ◽  
Vol 11 (3) ◽  
pp. 1165
Author(s):  
Wen-Tien Hsiao ◽  
Yi-Hong Chou ◽  
Jhong-Wei Tu ◽  
Ai-Yih Wang ◽  
Lu-Han Lai

The purpose of this study is to establish the minimal injection doses of magnetic resonance imaging (MRI) contrast agents that can achieve optimized images while improving the safety of injectable MRI drugs. Gadolinium-diethylenetriamine penta-acetic acid (Gd-DTPA) and ferucarbotran, commonly used in clinical practice, were selected and evaluated with in vitro and in vivo experiments. MRI was acquired using T1-weighted (T1W) and T2-weighted (T2W) sequences, and the results were quantitatively analyzed. For in vitro experiments, results showed that T1W and T2W images were optimal when Gd-DTPA-bisamide (2-oxoethyl) (Gd-DTPA-BMEA) and ferucarbotran were diluted to a volume percentage of 0.6% and 0.05%; all comparisons were significant differences in grayscale statistics using one-way analysis of variance (ANOVA). For in vivo experiments, the contrast agent with optimal concentration percentages determined from in vitro experiments were injected into mice with an injection volume of 100 μL, and the images of brain, heart, liver, and mesentery before and after injection were compared. The statistical results showed that the p values of both T1W and T2W were less than 0.001, which were statistically significant. Under safety considerations for MRI contrast agent injection, optimized MRI images could still be obtained after reducing the injection concentration, which can provide a reference for the safety concentrations of MRI contrast agent injection in the future.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5545 ◽  
Author(s):  
Izaz Raouf ◽  
Piotr Gas ◽  
Heung Soo Kim

Recently, in-vitro studies of magnetic nanoparticle (MNP) hyperthermia have attracted significant attention because of the severity of this cancer therapy for in-vivo culture. Accurate temperature evaluation is one of the key challenges of MNP hyperthermia. Hence, numerical studies play a crucial role in evaluating the thermal behavior of ferrofluids. As a result, the optimum therapeutic conditions can be achieved. The presented research work aims to develop a comprehensive numerical model that directly correlates the MNP hyperthermia parameters to the thermal response of the in-vitro model using optimization through linear response theory (LRT). For that purpose, the ferrofluid solution is evaluated based on various parameters, and the temperature distribution of the system is estimated in space and time. Consequently, the optimum conditions for the ferrofluid preparation are estimated based on experimental and mathematical findings. The reliability of the presented model is evaluated via the correlation analysis between magnetic and calorimetric methods for the specific loss power (SLP) and intrinsic loss power (ILP) calculations. Besides, the presented numerical model is verified with our experimental setup. In summary, the proposed model offers a novel approach to investigate the thermal diffusion of a non-adiabatic ferrofluid sample intended for MNP hyperthermia in cancer treatment.


2020 ◽  
Vol 11 (SPL4) ◽  
pp. 1853-1863
Author(s):  
Shubhra Rai ◽  
Gopal Rai ◽  
Ashish Budhrani

Lipospheres represent a novel type of fat-based encapsulation system produced for the topical drug delivery of bioactive compounds. The goal of this research work was to develop lipospheres, including ketoprofen applied for topical skin drug delivery. Ketoprofen lipospheres were formulated by melt emulsification method using stearic acid and Phospholipon® 90G. The lipospheres were analysed in terms of particle size and morphology, entrapment efficiency, Differential scanning calorimetry, In-vitro drug release, In-vivo (Anti-inflammatory activity). Outcomes of research revealed that particle size was found to be 9.66 µm and entrapment efficiency 86.21 ± 5.79 %. In-vivo, the study of ketoprofen loaded lipospheres formulation shows a higher plain formulation concentration in plasma (5.61 mg/mL). For dermis, ketoprofen retention was 27.02 ± 5.4 mg/mL for the lipospheres formulation, in contrast to that of the plain formulation group (10.05 ± 2.8 mg/mL). The anti-inflammatory effect of liposphere drug delivery systems was assessed by the xylene induced ear oedema technique and compared with marketed products. Finally, it seems that the liposphere drug delivery system possesses superior anti-inflammatory activity as compared to the marketed product gel consistencies. Liposphere may be capable of entrapping the medicament at very high levels and controlling its release over an extended period. Liposphere furnishes a proper size for topical delivery as well as is based on non-irritating and non-toxic lipids; it’s a better option for application on damaged or inflamed skin.


Author(s):  
NAGADANI SWARNALATHA ◽  
VIDYAVATHI MARAVAJHALA

Objective: The aim of the present research work was to prepare and evaluate taste-masked oral disintegrating tablets (ODT) of Fexofenadine hydrochloride. Methods: In the present work, Eudragit EPO, a taste masking agent and Karaya gum (GK) (natural), Sodium starch glycolate, and Croscarmellose sodium (CCS) (semi-synthetic) super disintegrants in three ratios (3, 6,9%) were used. Taste masked granules were prepared by different ratios of the drug: Eudragit EPO (1:1, 1:1.5, 1:2) by wet granulation method. The optimized taste-masked granules (1:2) were selected by sensory evaluation test to prepare 9 Fexofenadine ODT (FH1-FH9) formulations. These were evaluated for different parameters. Then desirability function (DF) was calculated for all formulations using disintegration time (DT), time taken for the tablet to release 90% of the drug (t 90%), and % drug dissolved in 10 min (Q10) as significant parameters. Results: The best formulation (FH6) showed the highest DF value due to less DT and 100% in vitro drug release within 15 min. Thus, FH6 formulation containing 9% CCS was selected as the best among the prepared formulations to which in vivo studies were performed on rabbits to find maximum plasma concentration (Cmax), time taken to reach maximum concentration (tmax), area under the curve (AUC), rate of elimination (Kel), absorption rate (Ka) and half-life(t1/2) and compared with Fexofenadine (Allegra) marketed tablets. Total bioavailability was increased for the test formulation compared to the reference formulation. Conclusion: Fexofenadine was successfully prepared as ODT with increased AUC and decreased tmax to which stability studies were conducted which were found to be stable.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yang Li ◽  
Chao Feng Yang ◽  
Hui Zuo ◽  
Ao Li ◽  
Sushant Kumar Das ◽  
...  

Background. The decrease in asialoglycoprotein receptor (ASGPR) levels is observed in patients with chronic liver disease and liver tumor. The aim of our study was to develop ASGPR-targeted superparamagnetic perfluorooctylbromide nanoparticles (M-PFONP) and wonder whether this composite agent could target buffalo rat liver (BRL) cells in vitro and could improve R2 ∗ value of the rat liver parenchyma after its injection in vivo. Methods. GalPLL, a ligand of ASGPR, was synthesized by reductive amination. ASGPR-targeted M-PFOBNP was prepared by a film hydration method coupled with sonication. Several analytical methods were used to investigate the characterization and safety of the contrast agent in vitro. The in vivo MR T2 ∗ mapping was performed to evaluate the enhancement effect in rat liver. Results. The optimum concentration of Fe3O4 nanoparticles inclusion in GalPLL/M-PFOBNP was about 52.79 µg/mL, and the mean size was 285.6 ± 4.6 nm. The specificity of GalPLL/M-PFOBNP for ASGPR was confirmed by incubation experiment with fluorescence microscopy. The methyl thiazolyl tetrazolium (MTT) test showed that there was no significant difference in the optical density (OD) of cells incubated with all GalPLL/M-PFOBNP concentrations. Compared with M-PFOBNP, the increase in R2 ∗ value of the rat liver parenchyma after GalPLL/M-PFOBNP injection was higher. Conclusions. GalPLL/M-PFOBNP may potentially serve as a liver-targeted contrast agent for MR receptor imaging.


Author(s):  
Sharuti Mehta ◽  
Anil Kumar Sharma ◽  
Rajesh Kumar Singh

Background: Andrographis paniculata, commonly known as “Kalmegh”, is an annual herbaceous plant from family Acanthaceae. The whole plant of A. paniculata has explored for multiple pharmacological activities and is scientifically recognized by in-vivo and in-vitro studies. Various biotechnologically engineered techniques have been explored to enhance the bioavailability of this plant. Objective: In this review, we aim to present comprehensive recent advances in the ethnopharmacology, phytochemistry, specific pharmacology, safety and toxicology and bioavailability of A. paniculata and its pure compounds. Possible directions for future research are also outlined in brief, which will encourage advance investigations on this plant. Methods: Information on the recent updates of the present review is collected from different electronic scientific databases such as Science Direct, PubMed, Scopus, and Google Scholar. All the composed information is classified into different sections according to the objective of the paper. Results: More than hundred research and review papers have been studied and incorporated in the present manuscript. After vast literature search of A. paniculata, we present a noteworthy report of various phytoconstituents present in plant, which are accountable for potential therapeutic properties of the plant. Forty-five of studied articles give general information about introduction, ethnobotany and traditional uses of the plant. Twenty-two papers enclosed information about the phytoconstituents present in different parts of A. paniculata and seventy-two papers briefly outlined the pharmacological activities like antioxidant, anti-dengue, anti-ulcerogenic, antifungal, some miscellaneous activities like activity against SARS-CoV-2, antidiarrhoeal. Nineteen studies highlighted the research work conducted by various researchers to increased bioavailability of A. paniculata and two studies reported the safety and toxicology of the plant. Conclusion: This review incorporated the scientifically validated research work encompassing the ethnobotanical description of the subjected plant, phytochemical profile, various pharmacological activities, and recent approaches to enhance the bioavailability of active metabolites.


2012 ◽  
Vol 2 (1) ◽  
pp. 8 ◽  
Author(s):  
Santanu Chakraborty ◽  
Priyanka Nayak ◽  
Bala Murali Krishna ◽  
Madhusmruti Khandai ◽  
Ashoke Kumar Ghosh

The aim of the present research work was to fabricate aceclofenac loaded pectinate microspheres by ionic gelation method and evaluate the effect of different cross-linking agents and polymer concentration on particle size, encapsulation efficacy and drug release behavior. It was also investigated that whether this pectinate dosage form was able to target the drug release in intestinal region and prevent the different side effect associated with the drug in stomach or not. It was observed that particle size, encapsulation efficacy and in vitro drug release were largely depended on polymer concentration and cross-linking agents. It was also observed that pectinate microspheres showed excellent pH depended mucoadhesive properties and they were able to restrict the drug release in stomach. <em>In vitro</em> drug release study showed that alminium-pectinate microspheres have more sustaining property as compared to barium-pectinate microspheres. Holm-Sidak multiple comparison analysis suggested a significant difference in measured t<sub>50%</sub> values among all the formulations with same cross-linking agent. In vivo studies revealed that the anti inflammatory and analgesic effects induced by pectinate microspheres were significantly high and prolonged as compared to pure drug. So, pectinate microspheres can be an excellent carrier for targeting the delivery of aceclofenac as well as help in improving the patient compliance by prolonging the systemic absorption.


Author(s):  
Nitin Gawai ◽  
Zahid Zaheer

 Objective: The present research study was undertaken to formulate mucoadhesive sustained release buccal tablets and patches of 5-fluorouracil (5-FU).Method: For the research experiment work design expert software version 10, stat-ease, Inc. has been used. A 32 full factorial design was selected for the formulation of the buccal tablet as well as buccal patches. In this research work, formulated tablets and patches using different polymers such as carbopol 974p, polyvinylpyrrolidone-K 30, sodium deoxycholate, microcrystalline cellulose, and polyvinyl alcohol. An after formulation of batches formulated products studied for characterization, namely, Fourier transform infrared (FTIR) and differential scanning calorimeter (DSC). Evaluation parameters studied such as weight uniformity, thickness, hardness, friability, and content uniformity also carried out. For drug release purpose from the formulation of buccal tablet and patches in vitro drug released performed. In vivo drug releases study also carried out using Rabbit for drug reaction point of view.Results: Design expert showed the significant results on independent and dependent variables. The R-Squared 0.9943 for drug release and 0.9985 for swelling index is in reasonable agreement with the formulations. FTIR and DSC indicating compatibility of the drug and polymers in the tablet formulation and patch formulations at the molecular level. The drug release of buccal tablet showed 75.10–99.34% and buccal patches showed 58.41–81.43%. These formulations showed good results when compared to the conventional tablet.Conclusion: Formulation of mucoadhesive sustained release buccal tablets and patches of 5-FU successfully done using different polymers, which would definitely help in increasing bioavailability of the drug.


Sign in / Sign up

Export Citation Format

Share Document