The synergistic effect of chemo-photothermal therapies in SN-38-loaded gold-nanoshell-based colorectal cancer treatment

Nanomedicine ◽  
2021 ◽  
Author(s):  
Shu-Jyuan Yang ◽  
Hsiao-Ting Huang ◽  
Chung-Huan Huang ◽  
Jui-An Pai ◽  
Chung-Hao Wang ◽  
...  

Aim: 7-Ethyl-10-hydroxycamptothecin (SN-38)-loaded gold nanoshells nanoparticles (HSP@Au NPs) were developed for combined chemo-photothermal therapy to treat colorectal cancer. Materials & methods: SN-38-loaded nanoparticles (HSP NPs) were prepared by the lyophilization-hydration method, and then developed into gold nanoshells. The nanoparticles were characterized and assessed for photothermal properties, cytotoxicity and hemocompatibility in vitro. In vivo anticancer activity was tested in a tumor mouse model. Results: The HSP@Au NPs (diameter 186.9 nm, zeta potential 33.4 mV) led to significant cytotoxicity in cancer cells exposed to a near-infrared laser. Moreover, the HSP@Au NP-mediated chemo-photothermal therapy displayed significant tumor growth suppression and disappearance (25% of tumor clearance rate) without adverse side effects in vivo. Conclusion: HSP@Au NPs may be promising in the treatment of colorectal cancer in the future.

2013 ◽  
Vol 25 (7) ◽  
pp. 945-945 ◽  
Author(s):  
Kai Yang ◽  
Huan Xu ◽  
Liang Cheng ◽  
Chunyang Sun ◽  
Jun Wang ◽  
...  

Author(s):  
Jun Yao ◽  
Chuanda Zhu ◽  
Tianjiao Peng ◽  
Qiang Ma ◽  
Shegan Gao

Recently, organic–inorganic hybrid materials have gained much attention as effective photothermal agents for cancer treatment. In this study, Pluronic F127 hydrogel-coated titanium carbide (Ti3C2) nanoparticles were utilized as an injectable photothermal agent. The advantages of these nanoparticles are their green synthesis and excellent photothermal efficiency. In this system, lasers were mainly used to irradiate Ti3C2 nanoparticles to produce a constant high temperature, which damaged cancer cells. The nanoparticles were found to be stable during storage at low temperatures for at least 2 weeks. The Ti3C2 nanoparticles exhibited a shuttle-shaped structure, and the hydrogels presented a loosely meshed structure. In addition, Ti3C2 nanoparticles did not affect the reversible temperature sensitivity of the gel, and the hydrogel did not affect the photothermal properties of Ti3C2 nanoparticles. The in vitro and in vivo results show that this hydrogel system can effectively inhibit tumor growth upon exposure to near-infrared irradiation with excellent biocompatibility and biosafety. The photothermal agent-embedded hydrogel is a promising photothermal therapeutic strategy for cancer treatment by enhancing the retention in vivo and elevating the local temperature in tumors.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Xunzhi Wu ◽  
Yongkuan Suo ◽  
Hui Shi ◽  
Ruiqi Liu ◽  
Fengxia Wu ◽  
...  

Abstract Photothermal therapy (PTT) using near-infrared (NIR) light for tumor treatment has triggered extensive attentions because of its advantages of noninvasion and convenience. The current research on PTT usually uses lasers in the first NIR window (NIR-I; 700–900 nm) as irradiation source. However, the second NIR window (NIR-II; 1000–1700 nm) especially NIR-IIa window (1300–1400 nm) is considered much more promising in diagnosis and treatment as its superiority in penetration depth and maximum permissible exposure over NIR-I window. Hereby, we propose the use of laser excitation at 1275 nm, which is approved by Food and Drug Administration for physical therapy, as an attractive technique for PTT to balance of tissue absorption and scattering with water absorption. Specifically, CuS-PEG nanoparticles with similar absorption values at 1275 and 808 nm, a conventional NIR-I window for PTT, were synthesized as PTT agents and a comparison platform, to explore the potential of 1275 and 808 nm lasers for PTT, especially in deep-tissue settings. The results showed that 1275 nm laser was practicable in PTT. It exhibited much more desirable outcomes in cell ablation in vitro and deep-tissue antitumor capabilities in vivo compared to that of 808 nm laser. NIR-IIa laser illumination is superior to NIR-I laser for deep-tissue PTT, and shows high potential to improve the PTT outcome.


2012 ◽  
Vol 24 (41) ◽  
pp. 5586-5592 ◽  
Author(s):  
Kai Yang ◽  
Huan Xu ◽  
Liang Cheng ◽  
Chunyang Sun ◽  
Jun Wang ◽  
...  

2016 ◽  
Vol 4 (35) ◽  
pp. 5938-5946 ◽  
Author(s):  
Huiting Bi ◽  
Yunlu Dai ◽  
Jiating Xu ◽  
Ruichan Lv ◽  
Fei He ◽  
...  

CuS–Pt(iv) nanoparticles exhibited high in vitro and in vivo anti-tumor efficiency, which was caused by the integrated Pt drug-induced chemotherapy and CuS nanoparticle-mediated photothermal therapy (PTT) upon irradiation with near infrared (NIR) light.


2021 ◽  
Vol 12 ◽  
Author(s):  
Peng Zhang ◽  
Lei Wang ◽  
Xiuying Chen ◽  
Xiang Li ◽  
Qinghai Yuan

Bi-based nanomaterials, such as Bi2Se3, play an important part in biomedicine, such as photothermal therapy (PTT) and computed tomography (CT) imaging. Polyethylenimine (PEI)-modified ultrasmall Bi2Se3 nanodots were prepared using an ultrafast synthetic method at room temperature (25°C). Bi2Se3 nanodots exhibited superior CT imaging performance, and could be used as effective photothermal reagents owing to their broad absorption in the ultraviolet–visible–near infrared region. Under irradiation at 808 nm, PEI-Bi2Se3 nanodots exhibited excellent photothermal-conversion efficiency of up to 41.3%. Good biocompatibility and significant tumor-ablation capabilities were demonstrated in vitro and in vivo. These results revealed that PEI-Bi2Se3 nanodots are safe and a good nanotheranostic platform for CT imaging-guided PTT of cancer.


2020 ◽  
Vol 10 (8) ◽  
pp. 1204-1212
Author(s):  
Tengbiao Ma ◽  
Xue Guan ◽  
Dan Wu ◽  
Xinxia Wang ◽  
Yali Cui

For cancer diagnosis and therapeutics, we adopted a novel strategy and established a new approach by using transarterial administration of gold nanoshells on silica nanorattles (GSNs) for multifunctional biomedical application. The GSNs exhibit high biocompatibility and stability in vitro and in vivo. It was found that an arterial administration of GSNs showed six-fold higher efficiency than the venous method. In this study, we found that the system of using GSNs had a high near-infrared (NIR) absorbance and excellent photothermal transfer capability for cancer photothermal therapy (PTT) efficiently. More importantly, the GSN treatment method, involving interventional procedures and nanomaterials, showed great potential to promote tumor apoptosis in all research. Using CT imaging technology, we monitored the volume change of tumors and confirmed cell apoptosis by TUNEL staining and immunohistochemistry. Furthermore, arterial administration of GSNs combined with NIR irradiation was established, and the related proteins was examined by Western blotting. Caspase-3 and 9 showed an high expression level within tumor tissues. Finally, a comparative study of biodistribution and safety was performed in vivo, and the biocompatibility was carefully evaluated. This GSN-based method was ultimately shown to be a promising approach for cancer therapy.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Jian-Li Chen ◽  
Han Zhang ◽  
Xue-Qin Huang ◽  
Hong-Ye Wan ◽  
Jie Li ◽  
...  

Abstract Photothermal agents with strong light absorption in the second near-infrared (NIR-II) region (1000–1350 nm) are strongly desired for successful photothermal therapy (PTT). In this work, titania-coated Au nanobipyramids (NBP@TiO2) with a strong plasmon resonance in the NIR-II window were synthesized. The NBP@TiO2 nanostructures have a high photothermal conversion efficiency of (93.3 ± 5.2)% under 1064-nm laser irradiation. They are also capable for loading an anticancer drug combretastatin A-4 phosphate (CA4P). In vitro PTT studies reveal that 1064-nm laser irradiation can efficiently ablate human lung cancer A549 cells and enhance the anticancer effect of CA4P. Moreover, the CA4P-loaded NBP@TiO2 nanostructures combined with PTT induce a synergistic antiangiogenesis effect. In vivo studies show that such CA4P-loaded NBP@TiO2 nanostructures under mild 1064-nm laser irradiation at an optical power density of 0.4 W cm−2, which is lower than the skin tolerance threshold value, exhibit a superior antitumor effect. This work presents not only the development of the NBP@TiO2 nanostructures as a novel photothermal agent responsive in the NIR-II window but also a unique combined chemo-photothermal therapy strategy for cancer therapy.


2021 ◽  
Vol 21 (9) ◽  
pp. 4553-4564
Author(s):  
Yihan Kong ◽  
Xue Li ◽  
Xiaojing Liu ◽  
Jingjing Pang ◽  
Xinling Mu ◽  
...  

The use of chemotherapy combined with photothermal therapy (PTT) is getting a focus topic for cancer treatment. Duing this research, the double targeting drug delivery system of nedaplatin (NDP)–carboxyl-functionalized magnetic mesoporous silica (MMSN-COOH)–galactosylated chitosan (GC) nanoparticles (NPs) was constructed. Because MMSNs have special physical properties, it can target to the specific area. In addition, it’s able to convert absorbed near-infrared (NIR) light into heat energy for photothermal therapy (PTT). Furthermore, the thermal energy generated by MMSNs under NIR lasers can accelerate the release of drug from preparations. Moreover, GC modified MMSNs-COOH as a carrier can increase the drug uptake of cancer cells that highly express galectins in vitro, resulting in cancer cell apoptosis, and thus increasing the targeting of cancerous tissue in vivo. The experimental consequences in vitro and in vivo revealed that the NDP@MMSNCOOH-GC NPs combined with PTT could avoid systemic toxicity and improve biosecurity while having good anticancer effect.


Sign in / Sign up

Export Citation Format

Share Document