tumor growth suppression
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 17)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Igor Nasibullin ◽  
Ivan Smirnov ◽  
Peni Ahmadi ◽  
Kenward Vong ◽  
Almira Kurbangalieva ◽  
...  

AbstractConsidering the intrinsic toxicities of transition metals, their incorporation into drug therapies must operate at minimal amounts while ensuring adequate catalytic activity within complex biological systems. As a way to address this issue, this study investigates the design of synthetic prodrugs that are not only tuned to be harmless, but can be robustly transformed in vivo to reach therapeutically relevant levels. To accomplish this, retrosynthetic prodrug design highlights the potential of naphthylcombretastatin-based prodrugs, which form highly active cytostatic agents via sequential ring-closing metathesis and aromatization. Structural adjustments will also be done to improve aspects related to catalytic reactivity, intrinsic bioactivity, and hydrolytic stability. The developed prodrug therapy is found to possess excellent anticancer activities in cell-based assays. Furthermore, in vivo activation by intravenously administered glycosylated artificial metalloenzymes can also induce significant reduction of implanted tumor growth in mice.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Shu-Jyuan Yang ◽  
Hsiao-Ting Huang ◽  
Chung-Huan Huang ◽  
Jui-An Pai ◽  
Chung-Hao Wang ◽  
...  

Aim: 7-Ethyl-10-hydroxycamptothecin (SN-38)-loaded gold nanoshells nanoparticles (HSP@Au NPs) were developed for combined chemo-photothermal therapy to treat colorectal cancer. Materials & methods: SN-38-loaded nanoparticles (HSP NPs) were prepared by the lyophilization-hydration method, and then developed into gold nanoshells. The nanoparticles were characterized and assessed for photothermal properties, cytotoxicity and hemocompatibility in vitro. In vivo anticancer activity was tested in a tumor mouse model. Results: The HSP@Au NPs (diameter 186.9 nm, zeta potential 33.4 mV) led to significant cytotoxicity in cancer cells exposed to a near-infrared laser. Moreover, the HSP@Au NP-mediated chemo-photothermal therapy displayed significant tumor growth suppression and disappearance (25% of tumor clearance rate) without adverse side effects in vivo. Conclusion: HSP@Au NPs may be promising in the treatment of colorectal cancer in the future.


ACS Nano ◽  
2021 ◽  
Author(s):  
Yanjuan Sang ◽  
Qingqing Deng ◽  
Fangfang Cao ◽  
Zhengwei Liu ◽  
Yawen You ◽  
...  

2021 ◽  
Vol 28 ◽  
Author(s):  
Aldo Bonaventura ◽  
Alessandra Vecchié ◽  
Massimiliano Ruscica ◽  
Francesco Grossi ◽  
Francesco Dentali

: Initially described as a factor involved in liver regeneration and neuronal differentiation, proprotein convertase subtilisin/kexin type 9 (PCSK9) has become one of the key regulators of low-density lipoprotein cholesterol. Besides that, a number of studies have suggested PCSK9 may play a role in cancer biology. This is particularly true for gastroenteric (gastric and liver cancers) and lung cancers, where higher PCSK9 levels were associated with the increased ability of the tumor to develop and give metastasis as well as with reduced overall survival. Accordingly, monoclonal antibodies blocking PCSK9 were recently shown to synergize with immunotherapy in different types of cancers to achieve tumor growth suppression through an increased intratumoral infiltration of cytotoxic T cells. Anti-PCSK9 vaccines have been tested in animal models with encouraging results only in colon carcinoma. As most of this evidence is based on pre-clinical studies, this has led to some controversies and inconsistencies, thus suggesting that additional research is needed to clarify the topic. Finally, modulation of intracellular PCSK9 levels by silencing RNA (siRNA) may help understand the physiological and pathological mechanisms of PCSK9.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1363
Author(s):  
Fan Wu ◽  
Yang Liu ◽  
Hui Cheng ◽  
Yun Meng ◽  
Jieyun Shi ◽  
...  

Cell autophagy is a well-known phenomenon in cancer, which limits the efficacy of cancer therapy, especially cancer starvation therapy. Glucose oxidase (GOx), which is considered as an attractive starvation reagent for cancer therapy, can effectively catalyze the conversion of glucose into gluconic acid and hydrogen peroxide (H2O2) in the presence of O2. However, tumor cells adapt to survive by inducing autophagy, limiting the therapy effect. Therefore, anti-cell adaptation via autophagy inhibition could be used as a troubleshooting method to enhance tumor starvation therapy. Herein, we introduce an anti-cell adaptation strategy based on dendritic mesoporous organosilica nanoparticles (DMONs) loaded with GOx and 3-methyladenine (3-MA) (an autophagy inhibition agent) to yield DMON@GOx/3-MA. This formulation can inhibit cell adaptative autophagy after starvation therapy. Our in vitro and in vivo results demonstrate that autophagy inhibition enhances the efficacy of starvation therapy, leading to tumor growth suppression. This anti-cell adaptation strategy will provide a new way to enhance the efficacy of starvation cancer therapy.


2021 ◽  
Author(s):  
Wei Wang ◽  
Zilong Zhou ◽  
Shuai Han ◽  
Di Wu

Abstract Glioblastomas (GBMs) are the most frequent primary malignancies in the central nervous system. Aberrant activation of WNT/β-catenin signaling pathways is critical for GBM malignancy. However, the regulation of WNT/β-catenin signaling cascades remains unclear. Presently, we observed the increased expression of ZEB2 and decreased expression of miR-637 in GBM. The expression of miR-637 was negatively correlated with expression of ZEB2. miR-637 overexpression overcame the ZEB2-enhanced cell proliferation and G1/S phase transition. In addition, miR-637 suppressed canonical WNT/β-catenin pathways by targeting WNT7A directly. Gain- and loss-of-function experiments in U251 mice demonstrated that miR-637 inhibited cell proliferation and arrested the G1/S phase transition, leading to tumor growth suppression. The collective findings suggest that ZEB2 and WNT/β-catenin cascades merge at miR-637 and the ectopic expression of miR-637 disturbs ZEB2/WNT/β-Catenin-mediated GBM growth. The findings should inform improved β-catenin-targeted therapy against GBM.


Author(s):  
Xiufeng Cong ◽  
Jun Chen ◽  
Ran Xu

Various nanocarriers with tumor targeting ability and improved pharmacokinetic property have been extensively utilized to reduce the toxicity of existing clinical chemotherapeutics. Herein, we showed that by encapsulating angiogenesis inhibitor anlotinib into polymeric nanoparticles, we could significantly decrease its in vivo toxicity. The introduction of pH-responsiveness into the nanocarrier further enhanced its anti-tumor activity. Systemic administration of the anlotinib-loaded nanocarrier into mice bearing A549 and 4T1 subcutaneous tumor received a higher tumor growth suppression and metastasis inhibition without detectable side effects. This strategy offers a promising option to improve the patient compliance of anlotinib.


2021 ◽  
Author(s):  
fan Wu ◽  
yang Liu ◽  
hui Cheng ◽  
yun Meng ◽  
yan Yi ◽  
...  

Abstract Glucose oxidase (GOx) can effectively catalyze glucose intogluconic acid and hydrogen peroxide (H2O2) in the presence of O2, which is considered as an attractive starvation strategy for cancer therapy. However, the autophagy phenomenon protects tumor cells from starvation therapy, limiting the therapy effect, thus autophagy inhibition could be used as a troubleshooting method to enhance tumor starvation therapy. Herein, biodegradable dendritic mesoporous organosilicon nanoagent (DMON) was used as the nanocarrier to deliver GOx and 3-MA (an autophagyinhibition agent), designed as DMON@GOx/3-MA. T his formulation could have a synergetic effect on autophagy inhibition and starvation therapy. All in vitro and in vivo results demonstrated that autophagy inhibition obviously enhanced the efficacy of starvation therapy, leading to tumor growth suppression. Our strategy will provide a new way to enhance the efficacy of starvation cancer therapy.


In Vivo ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 239-248
Author(s):  
HIRONOBU YANAGIE ◽  
TAKASHI FUJINO ◽  
MASASHI YANAGAWA ◽  
TOSHIMITSU TERAO ◽  
TAKASHI IMAGAWA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document