Extracellular matrix extraction techniques and applications in biomedical engineering

2021 ◽  
Vol 16 (8) ◽  
pp. 775-802
Author(s):  
Kirthanashri S Vasanthan ◽  
Varadharajan Srinivasan ◽  
Deepti Pandita

The concept of tissue engineering involves regeneration and repair of damaged tissue and organs using various combinations of cells, growth factors and scaffolds. The extracellular matrix (ECM) forms the integral part of the scaffold to induce cell proliferation thereby leading to new tissue formation. Decellularization technique provides decellularized ECM (dECM), free of cells while preserving the in vivo biomolecules. In this review, we focus on the detailed methodology of diverse decellularization techniques for various organs of different animals, and the biomedical applications employing the dECM. A culmination of different methods of decellularization is optimized, which offers a suitable microenvironment mimicking the native in vivo topography for in vitro organ regeneration. A detailed assessment of the dECM provides information on the microarchitecture, presence of ECM proteins, biocompatibility and cell proliferation. dECM has also been processed as scaffolds and drug-delivery vehicles, and utilized for regeneration.

2001 ◽  
Vol 676 ◽  
Author(s):  
Jonathan D. Eichman ◽  
Mohamed K. Khan ◽  
Inhan Lee ◽  
James R. Baker ◽  
Theodore S. Lawrence ◽  
...  

ABSTRACTDendrimer nanocomposites (DNC) are hybrid nanoparticles formed by the dispersion and immobilization of guest atoms or small clusters in dendrimer matrices. They have a great potential in biomedical applications due to their controlled composition, predetermined size, shape and surface functionalities. In this work, nanocomposites of gold and poly(amidoamine) dendrimers {Au(0)n-PAMAM} have been selected to demonstrate this nanoparticle based concept. {Au(0)n-PAMAM} gold dendrimer nanocomposites with a well-defined size have been synthesized and imaged by TEM both in vitro and in vivo. Dendrimer nanocomposites have also the potential to be used as drug delivery vehicles either utilizing bioactive guests or incorporating radioactive isotopes. Radioactive dendrimer nanocomposites, e.g. {198-Au}, can be delivered to the tumor either by means of injecting the active nanoparticles directly into the tumor microvasculature or by intravenous injection. Both specific or non-specific targeting can be utilized in this process to achieve appropriate transfer.


2020 ◽  
Vol 17 (3) ◽  
pp. 229-245
Author(s):  
Gang Wang ◽  
Junjie Wang ◽  
Rui Guan

Background: Owing to the rich anticancer properties of flavonoids, there is a need for their incorporation into drug delivery vehicles like nanomicelles for safe delivery of the drug into the brain tumor microenvironment. Objective: This study, therefore, aimed to prepare the phospholipid-based Labrasol/Pluronic F68 modified nano micelles loaded with flavonoids (Nano-flavonoids) for the delivery of the drug to the target brain tumor. Methods: Myricetin, quercetin and fisetin were selected as the initial drugs to evaluate the biodistribution and acute toxicity of the drug delivery vehicles in rats with implanted C6 glioma tumors after oral administration, while the uptake, retention, release in human intestinal Caco-2 cells and the effect on the brain endothelial barrier were investigated in Human Brain Microvascular Endothelial Cells (HBMECs). Results: The results demonstrated that nano-flavonoids loaded with myricetin showed more evenly distributed targeting tissues and enhanced anti-tumor efficiency in vivo without significant cytotoxicity to Caco-2 cells and alteration in the Trans Epithelial Electric Resistance (TEER). There was no pathological evidence of renal, hepatic or other organs dysfunction after the administration of nanoflavonoids, which showed no significant influence on cytotoxicity to Caco-2 cells. Conclusion: In conclusion, Labrasol/F68-NMs loaded with MYR and quercetin could enhance antiglioma effect in vitro and in vivo, which may be better tools for medical therapy, while the pharmacokinetics and pharmacodynamics of nano-flavonoids may ensure optimal therapeutic benefits.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1694
Author(s):  
Emmanuel Twumasi Osei ◽  
Steven Booth ◽  
Tillie-Louise Hackett

As the lung develops, epithelial-mesenchymal crosstalk is essential for the developmental processes that drive cell proliferation, differentiation, and extracellular matrix (ECM) production within the lung epithelial-mesenchymal trophic unit (EMTU). In asthma, a number of the lung EMTU developmental signals have been associated with airway inflammation and remodeling, which has led to the hypothesis that aberrant activation of the asthmatic EMTU may lead to disease pathogenesis. Monoculture studies have aided in the understanding of the altered phenotype of airway epithelial and mesenchymal cells and their contribution to the pathogenesis of asthma. However, 3-dimensional (3D) co-culture models are needed to enable the study of epithelial-mesenchymal crosstalk in the setting of the in vivo environment. In this review, we summarize studies using 3D co-culture models to assess how defective epithelial-mesenchymal communication contributes to chronic airway inflammation and remodeling within the asthmatic EMTU.


2021 ◽  
Vol 22 (22) ◽  
pp. 12560
Author(s):  
Su Hee Kim ◽  
Donghak Kim ◽  
Misun Cha ◽  
Soo Hyun Kim ◽  
Youngmee Jung

A dome-shaped elastic poly (l-lactide-co-caprolactone) (PLCL) scaffold with a channel and pore structure was fabricated by a combinative method of 3D printing technology and the gel pressing method (13 mm in diameter and 6.5 mm in thickness) for patient-specific regeneration. The PLCL scaffold was combined with adipose decellularized extracellular matrix (adECM) and heart decellularized extracellular matrix (hdECM) hydrogels and human adipose-derived stem cells (hADSCs) to promote adipogenesis and angiogenesis. These scaffolds had mechanical properties similar to those of native adipose tissue for improved tissue regeneration. The results of the in vitro real-time PCR showed that the dECM hydrogel mixture induces adipogenesis. In addition, the in vivo study at 12 weeks demonstrated that the tissue-engineered PLCL scaffolds containing the hydrogel mixture (hdECM/adECM (80:20)) and hADSCs promoted angiogenesis and adipose tissue formation, and suppressed apoptosis. Therefore, we expect that our constructs will be clinically applicable as material for the regeneration of patient-specific large-sized adipose tissue.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Todd O. Pangburn ◽  
Matthew A. Petersen ◽  
Brett Waybrant ◽  
Maroof M. Adil ◽  
Efrosini Kokkoli

Targeted delivery of therapeutics is an area of vigorous research, and peptide- and aptamer-functionalized nanovectors are a promising class of targeted delivery vehicles. Both peptide- and aptamer-targeting ligands can be readily designed to bind a target selectively with high affinity, and more importantly are molecules accessible by chemical synthesis and relatively compact compared with antibodies and full proteins. The multitude of peptide ligands that have been used for targeted delivery are covered in this review, with discussion of binding selectivity and targeting performance for these peptide sequences where possible. Aptamers are RNA or DNA strands evolutionarily engineered to specifically bind a chosen target. Although use of aptamers in targeted delivery is a relatively new avenue of research, the current state of the field is covered and promises of future advances in this area are highlighted. Liposomes, the classic drug delivery vector, and polymeric nanovectors functionalized with peptide or aptamer binding ligands will be discussed in this review, with the exclusion of other drug delivery vehicles. Targeted delivery of therapeutics, from DNA to classic small molecule drugs to protein therapeutics, by these targeted nanovectors is reviewed with coverage of both in vitro and in vivo deliveries. This is an exciting and dynamic area of research and this review seeks to discuss its broad scope.


2019 ◽  
Vol 7 (17) ◽  
pp. 2845-2854 ◽  
Author(s):  
Yanbo Liu ◽  
Jirong Yang ◽  
Zhaocong Luo ◽  
Dongxiao Li ◽  
Jian Lu ◽  
...  

We have developed an injectable thiolated icariin functionalized hyaluronic acid/collagen hydrogel under physiological conditions to facilitate cell proliferation, maintain chondrocyte phenotype and promote the secretion of the cartilage extracellular matrix.


2018 ◽  
Vol 6 (34) ◽  
pp. 5443-5450 ◽  
Author(s):  
Qinghe Han ◽  
Xiaodong Wang ◽  
Zhiqiang Sun ◽  
Xiaofei Xu ◽  
Longhai Jin ◽  
...  

A simple and novel synthetic route was developed to fabricate multifunctional Fe3O4@C eccentric core–shell nanoparticles as synergetic pH/NIR-responsive drug delivery vehicles for simultaneous biomodal magnetic resonance/photoacoustic imaging and synergistic photothermal cancer therapy in vitro.


Sign in / Sign up

Export Citation Format

Share Document