scholarly journals Influence of Beef Production System Technology on Calpain-1 Autolysis and Troponin-T Degradation

2019 ◽  
Vol 3 (2) ◽  
Author(s):  
L. G. Johnson ◽  
J. K. Grubbs ◽  
K. R. Underwood ◽  
M. J. Webb ◽  
A. D. Blair

ObjectivesBeef production systems utilize implants and β-agonists to improve beef cattle feed efficiency and promote muscle growth. Warner-Bratzler shear force values can be greater in strip loin steaks from cattle treated with implants or β-agonists. Calpain-1 degrades myofibrillar proteins post-mortem, thus altering calpain-1 activation or autolysis which can influence meat tenderness and proteolysis. The objective of this study was to determine the impact beef production system technologies on calpain-1 autolysis and troponin-T degradation as an indicator of tenderness formation and postmortem proteolysis.Materials and MethodsFrom a larger study, beef striploins (n = 16, n = 4/treatment) from cattle finished utilizing four different production systems were collected for analysis: 1) no antibiotics (NA; receiving no technology); 2) non-hormone treated cattle (NHTC; fed 300 mg monensin and 90 mg tylosin during the finishing phase); 3) implant (IMPL; same technologies as NHTC and administered a series of three implants including a low- potency calf implant [36 mg zeranol], a moderate-potency initial feedyard implant [80 mg trenbolone acetate and 16 mg estradiol], and a high potency finishing implant [200 mg of trenbolone acetate and 20 mg estradiol]; and 4) all previous technologies plus fed a β-agonist (IMBA; same technologies as IMPL and fed 200 mg ractopamine hydrochloride per steer per d). Striploins were vacuum packaged, aged for 7 d, and frozen. Western Blots were conducted for calpain-1 autolysis and troponin-T degradation (30 kDa). Abundance of calpain-1 bands and troponin-T degradation product was normalized by a reference on each gel. Treatments were evaluated in PROC MIXED of SAS 9.2 where least squares means and SEM were computed and separated using least significant differences (PDIFF) when tests for fixed effects were significant at P < 0.05 and trending P ≤ 0.10.ResultsCalpain-1 autolysis differed (P < 0.05) in the IMPL group compared to the NHTC group for both active, 78 kDa band, and the fully autolyzed, 76 kDa band. The IMPL group had a greater percentage (P = 0.0048) of active calpain-1 and a lower percentage (P = 0.0048) of fully autolyzed calpain-1 compared to the NHTC group. Also, a trend was detected when comparing both the active, 78 kDa band, and fully autolyzed, 76 kDa band, in the IMBA and IMPL group where the IMPL group had a greater percentage (P = 0.0727) of active calpain-1 and a lower percentage (P = 0.0727) of fully autolyzed calpain-1. Production system did not influence (P > 0.05) 30 kDa troponin-T product abundance.ConclusionThese data indicate level of technology may play a role in the activation and autolysis of calpain-1 from the 80 kDa inactive form to the 78 kDa active product and finally to the 76 kDa autolyzed product. Calpain-1 autolysis was not measured; however, these data suggest calpain-1 autolysis in the IMPL group may be limited compared with NHTC and IMBA groups. Consequently, calpain-1 may remain in the 78 kDa active form in the implanted cattle, actively degrading myofibrillar proteins. However, production system did not influence troponin-T 30 kDa degradation products. Further analysis of the rate of calpain-1 autolysis and troponin-T degradation at different days of postmortem aging could provide further evidence that different beef production technologies impact calpain-1 autolysis and postmortem proteolysis.

Author(s):  
Emre Bilgin Sarı ◽  
Sabri Erdem

Seru production system is a flexible, cost-effective, workforce competence-oriented manufacturing management system that provides the opportunity to respond quickly to customer demand. As in parallel to technology and physical improvements, customer demands are also effective for development of production systems. The impact of change in demand has been seen on changeover from job shop to mass production, flexible, and lean manufacturing systems. Seru production system is more appropriate for targeting work both cost-effectively like mass production and maximum diversification like job shop production. This chapter clarifies the Seru production system and explain its use and benefits in the clothing industry. In the application, a shirt production is illustrated according to the principles of mass production, lean production, and Seru production. Thus, different types of production systems have been benchmarked. There will be potential study areas for proving the efficiency of Seru soon.


2016 ◽  
Vol 79 (10) ◽  
pp. 1663-1672 ◽  
Author(s):  
SHIRLEY A. MICALLEF ◽  
MARY THERESA CALLAHAN ◽  
SIVARANJANI PAGADALA

ABSTRACT No data exist on the impact of cultivation practices on food safety risks associated with cucumber. Cucumbers are typically grown horizontally over a mulch cover, with fruit touching the ground, but this vining plant grows well in vertical systems. To assess whether production system affects bacterial dispersal onto plants, field trials were conducted over 2 years. Cucumber cultivar ‘Marketmore 76’ was grown horizontally on plastic, straw, or bare ground or vertically on trellises installed on bare ground in soil previously amended with raw dairy manure. Fruit, flower, leaf, and soil samples were collected to quantify Escherichia coli, thermotolerant coliforms, and enterococci by direct plating. E. coli isolates were characterized by BOX-PCR to evaluate relatedness among strains. Although thermotolerant coliforms and enterococci were significantly less abundant on fruit in year 1 (P &lt; 0.05), this result was not seen in year 2 when more rain was recorded. Instead, fruit from straw-mulched beds had higher levels of enterococci compared with fruit grown on bare ground (P &lt; 0.05). Leaves on bare ground occasionally had more bacteria than did leaves on plastic mulch beds (P &lt; 0.05). Production system did not impact flower-associated bacterial levels. E. coli isolates (n =127) were genotyped, generating 21 distinct fingerprints. Vertical production did not appear to be a barrier for E. coli dispersal to the crop, as suggested by numerous related isolates from soil and flowers on bare ground, straw-mulched, and trellised beds (subcluster B1). None of the isolates from soil and flowers in this subcluster were related to isolates recovered from fruit, showing that flower colonization does not necessarily lead to fruit colonization. One cluster of isolates contained those from flowers and fruits but not soil, indicating a source other than manure-amended soil. Straw may be a source of E. coli; a number of closely related E. coli isolates were retrieved from soil and fruits from straw-mulched beds. Our approach revealed E. coli dispersal patterns and could be used to assess bacterial transmission in other production systems.


Animals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 286 ◽  
Author(s):  
Donald M. Broom

This analysis, using published data, compared all land and conserved water use in four beef production systems. A widespread feedlot system and fertilised irrigated pasture systems used similar amounts of land. However, extensive unmodified pasture systems used three times more land, and semi-intensive silvopastoral systems used four times less land, so the highest use was 13 times the lowest. The amount of conserved water used was 64% higher in feedlots with relatively intensive rearing systems than in fertilised irrigated pasture; in extensive unmodified pasture systems, it was 38% and in semi-intensive silvopastoral systems, it was 21% of the fertilised irrigated pasture value, so the highest use was eight times the lowest. If there was no irrigation of pasture or of plants used for cattle feed, the feedlot water use was 12% higher than the fertilised pasture use and 57% higher than that in semi-intensive silvopastoral systems. These large effects of systems on resource use indicate the need to consider all systems when referring to the impact of beef or other products on the global environment. Whilst the use of animals as human food should be reduced, herbivorous animals that consume food that humans cannot eat and are kept using sustainable systems are important for the future use of world resources.


2011 ◽  
Vol 51 (6) ◽  
pp. 570 ◽  
Author(s):  
S. A. Wainewright ◽  
A. J. Parker ◽  
W. E. Holmes ◽  
H. Zerby ◽  
L. A. Fitzpatrick

Assessing the differences in gross margins for a north-western Queensland beef-production system was undertaken using herd-budgeting software. The analysis reviewed the viability of producing beef for the domestic market from either a steer or bull production system. A hypothetical herd of 1200 breeders was created for the case study evaluation. An integrated beef production system from breeding to feedlot finishing was found to be less profitable for bull beef production than for steers at the current market prices. Although bull production was more profitable than steer production during the feedlot phase, the production of bulls in this phase failed to compensate for the earlier economic losses in the weaning phase of –AU$24.04 per adult equivalent for bulls. During the feedlot phase, bull production systems had lower break-even sale prices than did steer production systems. In reviewing two pricing scenarios for bulls, it was found that marketing bulls at the same price as steers was the most profitable production system. We conclude that the production of bull beef from a north-western Queensland production system can be profitable only if bulls can be sold without discount relative to steers.


2007 ◽  
Vol 87 (2) ◽  
pp. 277-280 ◽  
Author(s):  
C. L. Girard ◽  
R. Berthiaume ◽  
L. Faucitano ◽  
C. Lafrenière

Vitamin B12 concentrations in longissimus dorsi of steers were decreased by the addition of concentrate as compared with feeding with grass silage only, but this decrease was prevented by the use of growth promotants (Revalor® and Rumensin®; P = 0.06). Beef production systems can modify vitamin B12 concentrations in meat. Key words: Beef, plasma, muscle, vitamin B12


1984 ◽  
Vol 38 (3) ◽  
pp. 385-390
Author(s):  
A. R. Peters ◽  
D. G. Evans ◽  
D. J. Read ◽  
Janet M. Beeby ◽  
W. Haresign

ABSTRACTYearling steers, 39 Friesians on an 18-month beef production system (group 1) and 38 Hereford × Friesians on a 20-month beef production system (group 2), were weighed, blood sampled and then half of them were implanted subcutaneously with 300 mg trenbolone acetate and 30 mg hexoestrol. All steers were then weighed and blood sampled at 1-month intervals for a further 3 (group 1) or 4 (group 2) months. Serum was assayed for prolactin, insulin, growth hormone, glucose and blood urea nitrogen concentrations. Steroid treatment increased daily live-weight gain by 28 to 37% over the experimental period and the proportional response appeared to be correlated with the plane of nutrition. Neither prolactin nor glucose concentrations were affected by the treatment. However, in both groups 1 and 2, growth hormone concentrations were significantly higher in implanted steers, whilst urea-nitrogen concentrations were significantly lower. Insulin concentrations were consistently, although not significantly, lower in implanted than in control steers.


2020 ◽  
Vol 12 ◽  
pp. 167-177 ◽  
Author(s):  
M Slater ◽  
E Fricke ◽  
M Weiss ◽  
A Rebelein ◽  
M Bögner ◽  
...  

Research into the effects of soundscapes on aquaculture species in key production systems is sparse, despite potential impacts of sound on animal welfare and commercial yields. In the following study, 2 high-value global aquaculture species, whiteleg shrimp Litopenaeus vannamei and Atlantic salmon Salmo salar, were exposed to aquaculture production system soundscapes. For shrimp, sound recordings of a commercial recirculating aquaculture system (RAS) were played back at a sound pressure level (SPL) of 128 dB re 1 µPa, and for salmon, recordings from a commercial sea pen production system were played back at an SPL of 127 dB re 1 µPa for an 8 wk period. Effects of exposure on growth, survival, and indications of metabolic stress were measured as parameters of interest for aquaculture production. Mean growth performance and survival rates did not differ significantly between sound and control treatments for either species. Blood and haemolymph parameters from both species indicated no measurable change in metabolic status or stress levels. Slight, but non-significant, increases in total haemocyte count and, in particular, hyaline cell count were recorded in shrimp exposed to sound. Slight, but non-significant reductions in overall weight gain were recorded in sound-exposed salmon. Overall, the results indicate that sound exposure in current production systems does not negatively affect the early grow-out stage of these key species, either due to rapid habituation or higher hearing thresholds of hatchery-produced individuals, and that no measurable stress response occurs in sound-exposed animals. In future studies, response of the studied species to acute sound exposure and the response of earlier, and potentially more sensitive, life-stages will need to be determined to ensure optimal welfare and production performance.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 893B-893
Author(s):  
Daniel Warnock* ◽  
Megan Fifarek ◽  
Heather Lash

The development of the Renaissance series of cut poinsettias, Euphorbia pulcherrima, presents unique opportunities and challenges to cut flower producers. This series has curled bracts, long stem length, excellent vase life and is highly marketable. Literature indicates that this crop is suited for pot or bed production, but does not compare methods. This study assessed the impact of production system on final stem quality. Uniform rooted cuttings of `Renaissance Red' obtained from a commercial supplier were transplanted into 30.5-cm pots or a 1.2-× 2.4-m bed containing a soilless media to obtain 2 plants per 0.9 m2. A total of 56 cuttings were used for each production system and grown using standard production techniques. Transplanting occurred on 11 Aug. 11 2003 with plants reaching market stage, two cyathia shedding pollen, about 17 weeks later. To minimize border effects, plants in the outside rows of each production system were discarded. Thus, stem length, stem diameter, bract diameter, floral development, and number of axillary shoots were determined for 30 interior plants in each system. The production systems differentially impacted stem length and number of axillary shoots. Mean stem length in the bed system (89.7 cm) was greater than that observed in the pot system (71.4 cm). Plants in the bed system had significantly fewer axillary branches per plant (0.5) than plants in the pots (2.0). Stem diameters were similar for both systems (11.5 mm and 10.9 mm for bench and pot, respectively) as were bract diameters (14.3 cm and 13.4 cm for pot and bench, respectively). Both systems produced marketable stems; however, stems produced in the bed system had longer stems, fewer axillary branches, and were more uniform than those in the pot system.


Author(s):  
Liaqat Ali ◽  
Shan Jin ◽  
Yong Bai

Abstract In past years, offshore oil and gas accidents have often occurred. Environmental hazards have the capability of turning into very difficult to manage in addition with the modern technology limits and lack of a fail-safe operation that can identify, control and terminate the accidents. However, the offshore crude oil also natural gas search and development is expanding to deep-water and moving promptly to the subsea production systems. (SPS). Though, the complicate subsea equipment material besides frequency offshore disasters stimulated the consideration onto the risk analysis of subsea systems. Detection of the impact of deep-water oil and gas reserves in the subsea production system. However, loss of SPSs can contribute to massive industrial failure, severe natural pollution, and indeed serious disasters. Therefore, the reliability analysis and safety of SPS have turned into a dominant consideration. This study addresses on the hazards and risk conditions which must be concentrated in the subsea machinery associated within surface equipments. Furthermore, the risks identification also the risk investigation onto subsea “Xmas tree” system is brought out. An over-all risk avert procedure of subsea “Xmas tree” system is represented, also the reliability evaluation method. Moreover, several recommendations on subsea production maintenance and detection are given in this research. This paper is reviewing the following section, subsea production system, hazards or risk identification, environmental issues, hydrate problems, corrosion problems, safety issues, risk assessment on subsea “Xmas tree”, reliability issues of a subsea system.


2013 ◽  
Vol 151 (5) ◽  
pp. 714-726 ◽  
Author(s):  
A. M. CLARKE ◽  
P. BRENNAN ◽  
P. CROSSON

SUMMARYIn Ireland, the largest contributor of greenhouse gas (GHG) emissions is agriculture. The objective of the current study was to evaluate the impact of stocking intensities of beef cattle production systems on technical and economic performance and GHG emissions. A bioeconomic model of Irish suckler beef production systems was used to generate scenarios and to evaluate their technical and economic performance. To model the impact of each scenario on GHG emissions, the output of the bioeconomic model was used as an inventory analysis in a life-cycle assessment model and various GHG emission factors were integrated with the production profile. All the estimated GHG emissions were converted to their 100-year global warming potential carbon dioxide equivalent (CO2e). The scenarios modelled were bull/heifer and steer/heifer suckler beef production systems at varying stocking intensities. According to policy constraints, stocking intensities were based on the excretion of organic nitrogen (N), which varied depending on animal category. Stocking intensity was increased by increasing fertilizer N application rates. Carcass output and profitability increased with increasing stocking intensity. At a stocking intensity of 150 kg N/ha total emissions were lowest when expressed per kg of beef carcass (20·1 kg CO2e/kg beef) and per hectare (9·2 tCO2e/ha) in the bull/heifer system. Enteric fermentation was the greatest source of GHG emissions and ranged from 0·49 to 0·47 of total emissions with increasing stocking intensity for both production systems. The current study shows that increasing stocking intensity via increased fertilizer N application rates leads to increased profitability on beef farms with only modest increases in GHG emissions.


Sign in / Sign up

Export Citation Format

Share Document