scholarly journals Class A Orphans in GtoPdb v.2021.3

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Stephen P.H. Alexander ◽  
Jim Battey ◽  
Helen E. Benson ◽  
Richard V. Benya ◽  
Tom I. Bonner ◽  
...  

Table 1 lists a number of putative GPCRs identified by NC-IUPHAR [161], for which preliminary evidence for an endogenous ligand has been published, or for which there exists a potential link to a disease, or disorder. These GPCRs have recently been reviewed in detail [121]. The GPCRs in Table 1 are all Class A, rhodopsin-like GPCRs. Class A orphan GPCRs not listed in Table 1 are putative GPCRs with as-yet unidentified endogenous ligands.Table 1: Class A orphan GPCRs with putative endogenous ligands GPR3GPR4GPR6GPR12GPR15GPR17GPR20 GPR22GPR26GPR31GPR34GPR35GPR37GPR39 GPR50GPR63GRP65GPR68GPR75GPR84GPR87 GPR88GPR132GPR149GPR161GPR183LGR4LGR5 LGR6MAS1MRGPRDMRGPRX1MRGPRX2P2RY10TAAR2 In addition the orphan receptors GPR18, GPR55 and GPR119 which are reported to respond to endogenous agents analogous to the endogenous cannabinoid ligands have been grouped together (GPR18, GPR55 and GPR119).

2019 ◽  
Vol 2019 (5) ◽  
Author(s):  
Stephen P.H. Alexander ◽  
Jim Battey ◽  
Helen E. Benson ◽  
Richard V. Benya ◽  
Tom I. Bonner ◽  
...  

Table 1 lists a number of putative GPCRs identified by NC-IUPHAR [194], for which preliminary evidence for an endogenous ligand has been published, or for which there exists a potential link to a disease, or disorder. These GPCRs have recently been reviewed in detail [150]. The GPCRs in Table 1 are all Class A, rhodopsin-like GPCRs. Class A orphan GPCRs not listed in Table 1 are putative GPCRs with as-yet unidentified endogenous ligands.Table 1: Class A orphan GPCRs with putative endogenous ligands GPR3GPR4GPR6GPR12GPR15GPR17GPR20 GPR22GPR26GPR31GPR34GPR35GPR37GPR39 GPR50GPR63GRP65GPR68GPR75GPR84GPR87 GPR88GPR132GPR149GPR161GPR183LGR4LGR5 LGR6MAS1MRGPRDMRGPRX1MRGPRX2P2RY10TAAR2 In addition the orphan receptors GPR18, GPR55 and GPR119 which are reported to respond to endogenous agents analogous to the endogenous cannabinoid ligands have been grouped together (GPR18, GPR55 and GPR119).


2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Stephen P.H. Alexander ◽  
Jim Battey ◽  
Helen E. Benson ◽  
Richard V. Benya ◽  
Tom I. Bonner ◽  
...  

Table 1 lists a number of putative GPCRs identified by NC-IUPHAR [191], for which preliminary evidence for an endogenous ligand has been published, or for which there exists a potential link to a disease, or disorder. These GPCRs have recently been reviewed in detail [148]. The GPCRs in Table 1 are all Class A, rhodopsin-like GPCRs. Class A orphan GPCRs not listed in Table 1 are putative GPCRs with as-yet unidentified endogenous ligands.Table 1: Class A orphan GPCRs with putative endogenous ligands GPR3GPR4GPR6GPR12GPR15GPR17GPR20 GPR22GPR26GPR31GPR34GPR35GPR37GPR39 GPR50GPR63GRP65GPR68GPR75GPR84GPR87 GPR88GPR132GPR149GPR161GPR183LGR4LGR5 LGR6MAS1MRGPRDMRGPRX1MRGPRX2P2RY10TAAR2 In addition the orphan receptors GPR18, GPR55 and GPR119 which are reported to respond to endogenous agents analogous to the endogenous cannabinoid ligands have been grouped together (GPR18, GPR55 and GPR119).


2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Stephen P.H. Alexander ◽  
Jim Battey ◽  
Helen E. Benson ◽  
Richard V. Benya ◽  
Tom I. Bonner ◽  
...  

Table 1 lists a number of putative GPCRs identified by NC-IUPHAR [194], for which preliminary evidence for an endogenous ligand has been published, or for which there exists a potential link to a disease, or disorder. These GPCRs have recently been reviewed in detail [150]. The GPCRs in Table 1 are all Class A, rhodopsin-like GPCRs. Class A orphan GPCRs not listed in Table 1 are putative GPCRs with as-yet unidentified endogenous ligands.Table 1: Class A orphan GPCRs with putative endogenous ligands GPR3 GPR4 GPR6 GPR12 GPR15 GPR17 GPR20 GPR22 GPR26 GPR31 GPR34 GPR35 GPR37 GPR39 GPR50 GPR63 GRP65 GPR68 GPR75 GPR84 GPR87 GPR88 GPR132 GPR149 GPR161 GPR183 LGR4 LGR5 LGR6 MAS1 MRGPRD MRGPRX1 MRGPRX2 P2RY10 TAAR2 In addition the orphan receptors GPR18, GPR55 and GPR119 which are reported to respond to endogenous agents analogous to the endogenous cannabinoid ligands have been grouped together (GPR18, GPR55 and GPR119).


2019 ◽  
Vol 16 (10) ◽  
pp. 1167-1174 ◽  
Author(s):  
Kamil J. Kuder ◽  
Tadeusz Karcz ◽  
Maria Kaleta ◽  
Katarzyna Kiec-Kononowicz

Background: : One of the best known to date GPCR class A (Rhodopsin) includes more than 100 orphan receptors for which the endogenous ligand is not known or is unclear. One of them is N-arachidonyl glycine receptor, named GPR18, a receptor that has been reported to be activated by Δ9-THC, endogenous cannabinoid receptors agonist anandamide and other cannabinoid receptor ligands suggesting it could be considered as third cannabinoid receptor. GPR18 activity, as well as its distribution might suggest usage of GPR18 ligands in treatment of endometriosis, cancer, and neurodegenerative disorders. Yet, so far only few GPR18 antagonists have been described, thus only ligand-based design approaches appear to be most useful to identify new ligands for this orphan receptor. Methods: : Main goal of this study, GPR18 inactive form homology model was built on the basis of the evolutionary closest homologous template: Human P2Y1 Receptor crystal structure. Results: : Obtained model was further evaluated and showed active/nonactive ligands differentiating properties with acceptable confidence. Moreover, it allowed for preliminary assessment of proteinligand interactions for a set of previously described ligands. Conclusion:: Thus collected data might serve as a starting point for a discovery of novel, active GPR18 blocking ligands.


Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 167 ◽  
Author(s):  
Victoria G. Williamson ◽  
Abhaya Dilip ◽  
Jackson R. Dillard ◽  
Jane Morgan-Daniel ◽  
Alexandra M. Lee ◽  
...  

Eating behaviors, including unhealthy snacking or excessive snacking leading to excess calorie consumption, may contribute to obesity among adolescents. Socioeconomic status (SES) also significantly influences eating behaviors, and low SES is associated with increased risk for obesity. However, little is known regarding the relationship between snacking behavior and SES among adolescents and how this may contribute to obesity-related outcomes. The primary objective of this scoping review was to review the literature to assess and characterize the relationship between SES and snacking in adolescents. The secondary objective was to assess weight-related outcomes and their relation to snacking habits. Included articles were published between January 2000 and May 2019; written in English, Portuguese, or Spanish; and focused on adolescents (13–17 years). In total, 14 bibliographic databases were searched, and seven studies met the inclusion criteria. Preliminary evidence from the seven included studies suggests a weak but potential link between SES and snacking. Additionally, these dietary patterns seemed to differ by sex and income type of country. Finally, only three of the included studies addressed weight-related outcomes, but the overall available evidence suggests that snacking does not significantly affect weight-related outcomes. Due to the small number of included studies, results should be interpreted with caution.


2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Corinne Bosquet ◽  
Justo P. Castaño ◽  
Zsolt Csaba ◽  
Micheal Culler ◽  
Pascal Dournaud ◽  
...  

Somatostatin (somatotropin release inhibiting factor) is an abundant neuropeptide, which acts on five subtypes of somatostatin receptor (SST1-SST5; nomenclature as agreed by the NC-IUPHAR Subcommittee on Somatostatin Receptors [89]). Activation of these receptors produces a wide range of physiological effects throughout the body including the inhibition of secretion of many hormones. Endogenous ligands for these receptors are somatostatin-14 (SRIF-14) and somatostatin-28 (SRIF-28). cortistatin-14 has also been suggested to be an endogenous ligand for somatostatin receptors [56].


2021 ◽  
Author(s):  
Sumin Lu ◽  
Wonjo Jang ◽  
Asuka Inoue ◽  
Nevin A. Lambert

AbstractA large number of GPCRs are potentially valuable drug targets but remain understudied. Many of these lack well-validated activating ligands and are considered “orphan” receptors, and G protein coupling profiles have not been defined for many orphan GPCRs. Here we asked if constitutive receptor activity can be used to determine G protein coupling profiles of orphan GPCRs. We monitored nucleotide-sensitive interactions between 48 understudied orphan GPCRs and five G proteins (240 combinations) using bioluminescence resonance energy transfer (BRET). No receptor ligands were used, but GDP was used as a common G protein ligand to disrupt receptor-G protein complexes. Constitutive BRET between the same receptors and β-arrestins was also measured. We found sufficient GDP-sensitive BRET to generate G protein coupling profiles for 22 of the 48 receptors we studied. Altogether we identified 48 coupled receptor-G protein pairs, many of which have not been described previously. We conclude that receptor-G protein complexes that form spontaneously in the absence of guanine nucleotides can be used to profile G protein coupling of constitutively active GPCRs. This approach may prove useful for studying G protein coupling of other GPCRs for which activating ligands are not available.


Sign in / Sign up

Export Citation Format

Share Document