scholarly journals Class Frizzled GPCRs in GtoPdb v.2021.3

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Elisa Arthofer ◽  
Jacomijn Dijksterhuis ◽  
Belma Hot ◽  
Paweł Kozielewicz ◽  
Matthias Lauth ◽  
...  

Receptors of the Class Frizzled (FZD, nomenclature as agreed by the NC-IUPHAR subcommittee on the Class Frizzled GPCRs [175]), are GPCRs originally identified in Drosophila [19], which are highly conserved across species. While SMO shows structural resemblance to the 10 FZDs, it is functionally separated as it mediates effects in the Hedgehog signaling pathway [175]. FZDs are activated by WNTs, which are cysteine-rich lipoglycoproteins with fundamental functions in ontogeny and tissue homeostasis. FZD signalling was initially divided into two pathways, being either dependent on the accumulation of the transcription regulator β-catenin or being β-catenin-independent (often referred to as canonical vs. non-canonical WNT/FZD signalling, respectively). WNT stimulation of FZDs can, in cooperation with the low density lipoprotein receptors LRP5 (O75197) and LRP6 (O75581), lead to the inhibition of a constitutively active destruction complex, which results in the accumulation of β-catenin and subsequently its translocation to the nucleus. β-catenin, in turn, modifies gene transcription by interacting with TCF/LEF transcription factors. WNT/β-catenin-independent signalling can also be activated by FZD subtype-specific WNT surrogates [133]. β-catenin-independent FZD signalling is far more complex with regard to the diversity of the activated pathways. WNT/FZD signalling can lead to the activation of heterotrimeric G proteins [33, 178, 150], the elevation of intracellular calcium [184], activation of cGMP-specific PDE6 [2] and elevation of cAMP as well as RAC-1, JNK, Rho and Rho kinase signalling [56]. Novel resonance energy transfer-based tools have allowed the study of the GPCR-like nature of FZDs in greater detail. Upon ligand stimulation, FZDs undergo conformational changes and signal via heterotrimeric G proteins [239, 240, 102, 174]. Furthermore, the phosphoprotein Dishevelled constitutes a key player in WNT/FZD signalling towards planar-cell-polarity-like pathways. Importantly, FZDs exist in at least two distinct conformational states that regulate pathway selection [240]. As with other GPCRs, members of the Frizzled family are functionally dependent on the arrestin scaffolding protein for internalization [22], as well as for β-catenin-dependent [13] and -independent [89, 14] signalling. The pattern of cell signalling is complicated by the presence of additional ligands, which can enhance or inhibit FZD signalling (secreted Frizzled-related proteins (sFRP), Wnt-inhibitory factor (WIF), sclerostin or Dickkopf (DKK)), as well as modulatory (co)-receptors with Ryk, ROR1, ROR2 and Kremen, which may also function as independent signalling proteins.

2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Elisa Arthofer ◽  
Jacomijn Dijksterhuis ◽  
Belma Hot ◽  
Paweł Kozielewicz ◽  
Matthias Lauth ◽  
...  

Receptors of the Class Frizzled (FZD, nomenclature as agreed by the NC-IUPHAR subcommittee on the Class Frizzled GPCRs [156]), are GPCRs originally identified in Drosophila [17], which are highly conserved across species. While SMO shows structural resemblance to the 10 FZDs, it is functionally separated as it mediates effects in the Hedgehog signaling pathway [156]. FZDs are activated by WNTs, which are cysteine-rich lipoglycoproteins with fundamental functions in ontogeny and tissue homeostasis. FZD signalling was initially divided into two pathways, being either dependent on the accumulation of the transcription regulator β-catenin or being β-catenin-independent (often referred to as canonical vs. non-canonical WNT/FZD signalling, respectively). WNT stimulation of FZDs can, in cooperation with the low density lipoprotein receptors LRP5 (O75197) and LRP6 (O75581), lead to the inhibition of a constitutively active destruction complex, which results in the accumulation of β-catenin and subsequently its translocation to the nucleus. β-Catenin, in turn, modifies gene transcription by interacting with TCF/LEF transcription factors. β-Catenin-independent FZD signalling is far more complex with regard to the diversity of the activated pathways. WNT/FZD signalling can lead to the activation of heterotrimeric G proteins [28, 159, 135], the elevation of intracellular calcium [164], activation of cGMP-specific PDE6 [2] and elevation of cAMP as well as RAC-1, JNK, Rho and Rho kinase signalling [48]. Novel resonance energy transfer-based tools have allowed the study of the GPCR-like nature of FZDs in greater detail. Upon ligand stimulation, FZDs undergo conformational changes and signal via heterotrimeric G proteins [213, 214]. Furthermore, the phosphoprotein Dishevelled constitutes a key player in WNT/FZD signalling. Importantly, FZDs exist in at least two distinct conformational states that regulate the pathway selection [214]. As with other GPCRs, members of the Frizzled family are functionally dependent on the arrestin scaffolding protein for internalization [19], as well as for β-catenin-dependent [12] and -independent [80, 13] signalling. The pattern of cell signalling is complicated by the presence of additional ligands, which can enhance or inhibit FZD signalling (secreted Frizzled-related proteins (sFRP), Wnt-inhibitory factor (WIF), sclerostin or Dickkopf (DKK)), as well as modulatory (co)-receptors with Ryk, ROR1, ROR2 and Kremen, which may also function as independent signalling proteins.


2016 ◽  
Vol 21 (10) ◽  
pp. 1034-1041 ◽  
Author(s):  
Scott P. Salowe ◽  
Lei Zhang ◽  
Hratch J. Zokian ◽  
Jennifer J. Gesell ◽  
Deborah L. Zink ◽  
...  

PCSK9 plays a significant role in regulating low-density lipoprotein (LDL) cholesterol levels and has become an important drug target for treating hypercholesterolemia. Although a member of the serine protease family, PCSK9 only catalyzes a single reaction, the autocleavage of its prodomain. The maturation of the proprotein is an essential prerequisite for the secretion of PCSK9 to the extracellular space where it binds the LDL receptor and targets it for degradation. We have found that a construct of proPCSK9 where the C-terminal domain has been truncated has sufficient stability to be expressed and purified from Escherichia coli for the in vitro study of autoprocessing. Using automated Western analysis, we demonstrate that autoprocessing exhibits the anticipated first-order kinetics. A high-throughput time-resolved fluorescence resonance energy transfer assay for autocleavage has been developed using a PCSK9 monoclonal antibody that is sensitive to the conformational changes that occur upon maturation of the proprotein. Kinetic theory has been developed that describes the behavior of both reversible and irreversible inhibitors of autocleavage. The analysis of an irreversible lactone inhibitor validates the expected relationship between potency and the reaction end point. An orthogonal liquid chromatography–mass spectrometry assay has also been implemented for the confirmation of hits from the antibody-based assays.


Author(s):  
Najeah Okashah ◽  
Qingwen Wan ◽  
Soumadwip Ghosh ◽  
Manbir Sandhu ◽  
Asuka Inoue ◽  
...  

G protein-coupled receptors (GPCRs) activate four families of heterotrimeric G proteins, and individual receptors must select a subset of G proteins to produce appropriate cellular responses. Although the precise mechanisms of coupling selectivity are uncertain, the Gα subunit C terminus is widely believed to be the primary determinant recognized by cognate receptors. Here, we directly assess coupling between 14 representative GPCRs and 16 Gα subunits, including one wild-type Gα subunit from each of the four families and 12 chimeras with exchanged C termini. We use a sensitive bioluminescence resonance energy transfer (BRET) assay that provides control over both ligand and nucleotide binding, and allows direct comparison across G protein families. We find that the Gs- and Gq-coupled receptors we studied are relatively promiscuous and always couple to some extent to Gi1 heterotrimers. In contrast, Gi-coupled receptors are more selective. Our results with Gα subunit chimeras show that the Gα C terminus is important for coupling selectivity, but no more so than the Gα subunit core. The relative importance of the Gα subunit core and C terminus is highly variable and, for some receptors, the Gα core is more important for selective coupling than the C terminus. Our results suggest general rules for GPCR-G protein coupling and demonstrate that the critical G protein determinants of selectivity vary widely, even for different receptors that couple to the same G protein.


2018 ◽  
Vol 115 (46) ◽  
pp. E10859-E10868 ◽  
Author(s):  
Yuwei Li ◽  
Jason A. Junge ◽  
Cosimo Arnesano ◽  
Garrett G. Gross ◽  
Jeffrey H. Miner ◽  
...  

Vertebrate embryogenesis and organogenesis are driven by cell biological processes, ranging from mitosis and migration to changes in cell size and polarity, but their control and causal relationships are not fully defined. Here, we use the developing limb skeleton to better define the relationships between mitosis and cell polarity. We combine protein-tagging and -perturbation reagents with advanced in vivo imaging to assess the role of Discs large 1 (Dlg1), a membrane-associated scaffolding protein, in mediating the spatiotemporal relationship between cytokinesis and cell polarity. Our results reveal that Dlg1 is enriched at the midbody during cytokinesis and that its multimerization is essential for the normal polarity of daughter cells. Defects in this process alter tissue dimensions without impacting other cellular processes. Our results extend the conventional view that division orientation is established at metaphase and anaphase and suggest that multiple mechanisms act at distinct phases of the cell cycle to transmit cell polarity. The approach employed can be used in other systems, as it offers a robust means to follow and to eliminate protein function and extends the Phasor approach for studying in vivo protein interactions by frequency-domain fluorescence lifetime imaging microscopy of Förster resonance energy transfer (FLIM-FRET) to organotypic explant culture.


2021 ◽  
Vol 118 (25) ◽  
pp. e2101004118
Author(s):  
Julianna R. Cresti ◽  
Abramo J. Manfredonia ◽  
Christopher E. Bragança ◽  
Joseph A. Boscia ◽  
Christina M. Hurley ◽  
...  

The 26S proteasome is the macromolecular machine responsible for the bulk of protein degradation in eukaryotic cells. As it degrades a ubiquitinated protein, the proteasome transitions from a substrate-accepting conformation (s1) to a set of substrate-processing conformations (s3 like), each stabilized by different intramolecular contacts. Tools to study these conformational changes remain limited, and although several interactions have been proposed to be important for stabilizing the proteasome’s various conformations, it has been difficult to test these directly under equilibrium conditions. Here, we describe a conformationally sensitive Förster resonance energy transfer assay, in which fluorescent proteins are fused to Sem1 and Rpn6, which are nearer each other in substrate-processing conformations than in the substrate-accepting conformation. Using this assay, we find that two sets of interactions, one involving Rpn5 and another involving Rpn2, are both important for stabilizing substrate-processing conformations. Mutations that disrupt these interactions both destabilize substrate-processing conformations relative to the substrate-accepting conformation and diminish the proteasome’s ability to successfully unfold and degrade hard-to-unfold substrates, providing a link between the proteasome’s conformational state and its unfolding ability.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Abhishek Mazumder ◽  
Richard H Ebright ◽  
Achillefs Kapanidis

Transcription initiation starts with unwinding of promoter DNA by RNA polymerase (RNAP) to form a catalytically competent RNAP-promoter complex (RPO). Despite extensive study, the mechanism of promoter unwinding has remained unclear, in part due to the transient nature of intermediates on path to RPo. Here, using single-molecule unwinding-induced fluorescence enhancement to monitor promoter unwinding, and single-molecule fluorescence resonance energy transfer to monitor RNAP clamp conformation, we analyze RPo formation at a consensus bacterial core promoter. We find that the RNAP clamp is closed during promoter binding, remains closed during promoter unwinding, and then closes further, locking the unwound DNA in the RNAP active-centre cleft. Our work defines a new, 'bind-unwind-load-and-lock' model for the series of conformational changes occurring during promoter unwinding at a consensus bacterial promoter and provides the tools needed to examine the process in other organisms and at other promoters.


Sign in / Sign up

Export Citation Format

Share Document