scholarly journals Site Response of the NARS-Baja and RESBAN Broadband Networks of the Gulf of California, México

2016 ◽  
Vol 55 (2) ◽  
Author(s):  
Lenin Ávila-Barrientos ◽  
Raúl R. Castro

We studied the seismic response of broadband stations located around the Gulf of California, Mexico, using the horizontal to vertical component spectral ratio method (HVSR). We analyzed 92 earthquakes recor-ded by the NARS-Baja and RESBAN networks, operated by CICESE. The database consists of events recorded between 2002 and 2006, with magnitudes ranging from 3.2 to 6.6. We rotated the records to find radial and transversal ground-motion components and we calculated Fourier spectra of S-wave windows recorded for the three ground-motion components. Then, we calculated HVSR for the individual components and the average of both horizontal components for every event. We analyze records from 20 stations located on sites with different geologic characteristics and we find azimuthal dependence on six of them that have amplification factors varying from 1.5 to up to 13 times at narrow back-azimuth ranges. We also find that sites with significant amplification factors (above three) show increasing amplification with increasing source magnitude.

2021 ◽  
Vol 11 (24) ◽  
pp. 11650
Author(s):  
Xiaomei Yang ◽  
Yongshan Chen ◽  
Shuai Teng ◽  
Gongfa Chen

The analysis of site seismic amplification characteristics is one of the important tasks of seismic safety evaluation. Owing to the high computational cost and complex implementation of numerical simulations, significant differences exist in the prediction of seismic ground motion amplification in engineering problems. In this paper, a novel prediction method for the amplification characteristics of local sites was proposed, using a state-of-the-art convolutional neural network (CNN) combined with real-time seismic signals. The amplification factors were computed by the standard spectral ratio method according to the observed records of seven stations in the Lower Hutt Valley, New Zealand. Based on the geological exploration data from the seven stations and the geological hazard information of the Lower Hutt Valley, eight parameters related to the seismic information were presumed to influence the amplification characteristics of the local site. The CNN method was used to establish the relationship between the amplification factors of local sites and the eight parameters, and the training samples and testing samples were generated through the observed and geological data other than the estimated values. To analyze the CNN prediction ability for amplification factors on unrecorded domains, two CNN models were established for comparison. One CNN model used about 80% of the data from 44 seismic events of the seven stations for training and the remaining data for testing. The other CNN model used the data of six stations to train and the remaining station’s data to test the CNN. The results showed that the CNN method based on the observation data can provide a powerful tool for predicting the amplification factors of local sites both for recorded positions and for unrecorded positions, while the traditional standard spectral ratio method only predicts the amplification factors for recorded positions. The comparison of the two CNN models showed that both can effectively predict the amplification factors of local ground motion without records, and the accuracy and stability of predictions can meet the requirements. With increasing seismic records, the CNN method becomes practical and effective for prediction purposes in earthquake engineering.


1994 ◽  
Vol 84 (6) ◽  
pp. 1861-1868
Author(s):  
Kou-Cheng Chen ◽  
Jer-Ming Chiu ◽  
Yung-Tun Yang

Abstract Three-component digital seismograms recorded by the 40 PANDA (Portable Array for Numerical Data Acquisition) stations in the New Madrid seismic zone were analyzed to study seismic wave attenuation in the sedimentary basin using the spectral ratio method. A prominent S-to-P (Sp) converted phase was generated at the boundary between the uppermost sedimentary basin and the underlying Paleozoic rocks. The direct S wave on the horizontal component is characterized by a lower-frequency content than that of the converted Sp wave on the vertical component. The differences in frequency content between the direct S and the Sp converted waves can be attributed to the different attenuation effects between P and S waves in the unconsolidated sediments. The spectral ratio between the low-frequency S wave and the high-frequency converted Sp wave from the bottom of the sediments can be used to yield a relationship between Qp and Qs in the sediments. Results from PANDA stations with well-constrained spectral ratios in the frequency range from 2 to 25 Hz give the Qp value ranging from 25 to 60 and Qs from 25 to 30 for the sedimentary basin in the upper Mississippi Embayment.


2020 ◽  
Vol 110 (2) ◽  
pp. 471-488 ◽  
Author(s):  
Samantha M. Palmer ◽  
Gail M. Atkinson

ABSTRACT Spectral decay of ground-motion amplitudes at high frequencies is primarily influenced by two parameters: site-related kappa (κ0) and regional Q (quality factor, inversely proportional to anelastic attenuation). We examine kappa and apparent Q-values (Qa) for M≥3.5 earthquakes recorded at seismograph stations on rock sites in eastern and western Canada. Our database contains 20 earthquakes recorded on nine stations in eastern Canada and 404 earthquakes recorded on eight stations in western Canada, resulting in 105 and 865 Fourier amplitude spectra, respectively. We apply two different methods: (1) a modified version of the classical S-wave acceleration method; and (2) a new stacking method that is consistent with the use of kappa in ground-motion modeling. The results are robust with respect to the method used and also with respect to the frequency band selected, which ranges from 9 to 38 Hz depending on the region, event, and method. Kappa values obtained from the classical method are consistent with those of the stacked method, but the stacked method provides a lower uncertainty. A general observation is that kappa is usually larger, and apparent Q is smaller, for the horizontal component in comparison to the vertical component. We determine an average regional κ0=7  ms (horizontal) and 0 ms (vertical) for rock sites in eastern Canada; we obtain κ0=19  ms (horizontal) and 14 ms (vertical) for rock sites in western Canada. We note that kappa measurements are quite sensitive to details of data selection criteria and methodology, and may be significantly influenced by site effects, resulting in large site-to-site variability.


1991 ◽  
Vol 7 (4) ◽  
pp. 551-561 ◽  
Author(s):  
Antonio Rovelli ◽  
Shri K. Singh ◽  
Luca Malagnini ◽  
Alessandro Amato ◽  
Massimo Cocco

We explore the feasibility of the use of microtremors in estimating the amplification of seismic waves at soft sites in Italy. Microtremors were measured at three soft sites and nearby hard sites at night when the cultural noise was minimum. These soft sites were selected as those showing the largest amplifications of ground motion during earthquakes as compared to the records on the hard sites or with respect to the predicted spectra. We compare the soft-to-hard site microtremor spectral ratios with the corresponding acceleration spectral ratios. A rough estimate of the shape and level of spectral amplification is obtained from the microtremor data in all three cases. However, the details of the soft-to-hard site spectral ratio are not reproduced and some differences appear in (a) the frequency at which the maximum amplification occurs, and (b) the bandwidth of the significant amplification. More testing of the method is needed before its wider use for microzonation in Italy can be recommended.


2021 ◽  
Author(s):  
Olga-Joan Ktenidou ◽  
Faidra Gkika ◽  
Erion-Vasilis Pikoulis ◽  
Christos Evangelidis

<p>Although it is nowadays desirable and even typical to characterise site conditions in detail at modern recording stations, this is not yet a general rule in Greece, due to the large number and geographical dispersion of stations. Indeed, most of them are still characterised merely through geological descriptions or proxy-based parameters, rather than through in-situ measurements. Considering: 1. the progress made in recent years with sophisticated ground motion models and the need to define region-specific rock conditions based on data, 2. the move towards large open-access strong-motion databases that require detailed site metadata, and 3. that Greek-provenance recordings represent a significant portion of European seismic data, there are many reasons to improve our understanding of site response at these stations. Moreover, it has been shown recently in several regions that even sites considered as rock can exhibit amplification and ground motion variability, which has given rise to more scientific research into the definition of reference sites. For Greece, in-situ-characterisation campaigns for the entire network would impose unattainable time/budget constraints; so, instead, we implement alternative empirical approaches using the recordings themselves, such as the horizontal-to-vertical spectral ratio technique and its variability. We present examples of 'well-behaved', typical rock sites, and others whose response diverges from what is assumed for their class.</p><p> </p>


Author(s):  
Rong Xu ◽  
Lanmin Wang

AbstractThe horizontal-to-vertical spectral ratio (HVSR) has been extensively used in site characterization utilizing recordings from microtremor and earthquake in recent years. This method is proposed based on ground pulsation, and then it has been applied to both S-wave and ambient noise, accordingly, in practical application also different. The main applications of HVSR are site classification, site effect study, mineral exploration, and acquisition of underground average shear-wave velocity structure. In site response estimates, the use of microtremors has been introduced long ago in Japan, while it has long been very controversial in this research area, as there are several studies reporting difficulties in recognizing the source effects from the pure site effects in noise recordings, as well as discrepancies between noise and earthquake recordings. In practice, the most reliable way is the borehole data, and the theoretical site response results were compared with the HVSR using shear wave to describe site response. This paper summarizes the applications of the HVSR method and draws conclusions that HVSR has been well applied in many fields at present, and it is expected to have a wider application in more fields according to its advantages.


Author(s):  
Peter Klin ◽  
Giovanna Laurenzano ◽  
Carla Barnaba ◽  
Enrico Priolo ◽  
Stefano Parolai

ABSTRACT The application of earthquake recordings to the estimation of an event’s magnitude and the construction of rapid-response ground-motion maps requires an adequate classification of the recording stations in terms of their site response. For permanent stations, this information can be obtained from a sufficiently large database of past recordings. In this work, we analyze more than 7300 three-component recordings collected between 1996 and 2017 by 67 permanent stations in northeastern Italy to assess their site amplification. The signals come from 368 earthquakes with a magnitude range of M 3.2–5.8 and a distance range of 10–300 km. We evaluate the frequency-dependent amplification function with respect to a reference station with a flat seismic noise horizontal-to-vertical spectral ratio. The evaluation relies on the decomposition of the S-wave amplitude spectra in terms of source, propagation, and site response. We solve the decomposition with a nonparametric, single-step generalized inversion in the frequency band 0.5–20 Hz. In addition, we compute the amplification factors for peak ground acceleration and velocity with respect to a well-established ground-motion prediction equation. The results highlight that only 11 stations show a relatively flat unitary response with respect to the reference site, whereas the frequency-averaged amplification function at 23 out of 67 stations exhibits a value larger than 2. We classified the sites according to their surface geology and geomorphological scenario and found that amplification affects not only stations installed on the alluvial soil but also several stations installed on what are assumed to be rock sites. Sites in caves and mines exhibit deamplification, whereas the stations with sensors in boreholes exhibit the typical interference pattern. A good correlation between the amplification factors and the frequency-averaged amplification functions suggests the possibility of predicting time-domain peak ground-motion values from amplification functions estimated by generalized inversion.


2006 ◽  
Vol 22 (1) ◽  
pp. 169-188 ◽  
Author(s):  
Sheri Molnar ◽  
John F. Cassidy

The applicability of the microtremor spectral ratio method is examined by comparing microtremor and weak-motion earthquake site responses at seven permanent strong-motion sites in Victoria, British Columbia. For each site, a weak-motion earthquake standard spectral ratio (bedrock reference), the average horizontal-to-vertical spectral ratio of up to five weak-motion earthquakes, and the average microtremor (Nakamura method) spectral ratio are compared. The geologic setting of Victoria is ideal for site response studies with a near-surface high impedance contrast between thin geologic layers of Victoria clay (about 11 m maximum in this study) and Pleistocene till or bedrock. Regardless of excitation source (weak-motion earthquakes or microtremors) and spectral ratio method, similar peak amplitudes and fundamental frequencies were found. Thicker material (>10 m) sites displayed higher peak amplitudes (up to six times amplification) at frequencies of 2–5 Hz compared to sites with a thin lens of material (<3 m) over bedrock that showed peak amplitudes at frequencies of >8 Hz.


2017 ◽  
Vol 33 (2) ◽  
pp. 499-528 ◽  
Author(s):  
Zeynep Gülerce ◽  
Ronnie Kamai ◽  
Norman A. Abrahamson ◽  
Walter J. Silva

Empirical ground motion models for the vertical component from shallow crustal earthquakes in active tectonic regions are derived using the PEER NGA-West2 database. The model is applicable to magnitudes 3.0–8.0, distances of 0–300 km, and spectral periods of 0–10 s. The model input parameters are the same as used by Abrahamson et al. (2014) except that the nonlinear site response and depth to bedrock effects are evaluated but found to be insignificant. Regional differences in large distance attenuation and site amplification scaling between California, Japan, China, Taiwan, Italy, and the Middle East are included. Scaling for the hanging-wall effect is incorporated using the constraints from numerical simulations by Donahue and Abrahamson (2014) . The standard deviation is magnitude dependent with smaller magnitudes leading to larger standard deviations at short periods but smaller standard deviations at long periods. The vertical ground motion model developed in this study can be paired with the horizontal component model proposed by Abrahamson et al. (2014) to produce a V/H ratio. For applications where the horizontal spectrum is derived from the weighted average of several horizontal ground motion models, a V/H model derived directly from the V/H data (such as Gülerce and Abrahamson 2011 ) should be preferred.


Sign in / Sign up

Export Citation Format

Share Document