scholarly journals A Novel Method for Predicting Local Site Amplification Factors Using 1-D Convolutional Neural Networks

2021 ◽  
Vol 11 (24) ◽  
pp. 11650
Author(s):  
Xiaomei Yang ◽  
Yongshan Chen ◽  
Shuai Teng ◽  
Gongfa Chen

The analysis of site seismic amplification characteristics is one of the important tasks of seismic safety evaluation. Owing to the high computational cost and complex implementation of numerical simulations, significant differences exist in the prediction of seismic ground motion amplification in engineering problems. In this paper, a novel prediction method for the amplification characteristics of local sites was proposed, using a state-of-the-art convolutional neural network (CNN) combined with real-time seismic signals. The amplification factors were computed by the standard spectral ratio method according to the observed records of seven stations in the Lower Hutt Valley, New Zealand. Based on the geological exploration data from the seven stations and the geological hazard information of the Lower Hutt Valley, eight parameters related to the seismic information were presumed to influence the amplification characteristics of the local site. The CNN method was used to establish the relationship between the amplification factors of local sites and the eight parameters, and the training samples and testing samples were generated through the observed and geological data other than the estimated values. To analyze the CNN prediction ability for amplification factors on unrecorded domains, two CNN models were established for comparison. One CNN model used about 80% of the data from 44 seismic events of the seven stations for training and the remaining data for testing. The other CNN model used the data of six stations to train and the remaining station’s data to test the CNN. The results showed that the CNN method based on the observation data can provide a powerful tool for predicting the amplification factors of local sites both for recorded positions and for unrecorded positions, while the traditional standard spectral ratio method only predicts the amplification factors for recorded positions. The comparison of the two CNN models showed that both can effectively predict the amplification factors of local ground motion without records, and the accuracy and stability of predictions can meet the requirements. With increasing seismic records, the CNN method becomes practical and effective for prediction purposes in earthquake engineering.

2006 ◽  
Vol 22 (1) ◽  
pp. 169-188 ◽  
Author(s):  
Sheri Molnar ◽  
John F. Cassidy

The applicability of the microtremor spectral ratio method is examined by comparing microtremor and weak-motion earthquake site responses at seven permanent strong-motion sites in Victoria, British Columbia. For each site, a weak-motion earthquake standard spectral ratio (bedrock reference), the average horizontal-to-vertical spectral ratio of up to five weak-motion earthquakes, and the average microtremor (Nakamura method) spectral ratio are compared. The geologic setting of Victoria is ideal for site response studies with a near-surface high impedance contrast between thin geologic layers of Victoria clay (about 11 m maximum in this study) and Pleistocene till or bedrock. Regardless of excitation source (weak-motion earthquakes or microtremors) and spectral ratio method, similar peak amplitudes and fundamental frequencies were found. Thicker material (>10 m) sites displayed higher peak amplitudes (up to six times amplification) at frequencies of 2–5 Hz compared to sites with a thin lens of material (<3 m) over bedrock that showed peak amplitudes at frequencies of >8 Hz.


1997 ◽  
Vol 87 (4) ◽  
pp. 961-970
Author(s):  
S. Gao

Abstract It is a well-known fact that the uncertainties in measuring relative attenuation factors within a local or regional seismic network are usually high, due to noise of different kinds and unrealistic assumptions. Numerical experiments using nine synthetic seismograms, created using t* values ranging from 0.1 to 0.9 sec, reveal that the commonly used spectral ratio method is strongly affected by the selection of data processing parameters such as width of the spectral smoothing window, reference station, and so on. The numerical experiments demonstrate that a Bayesian nonlinear inversion approach that directly matches the spectra is better at finding the correct parameters used to generate the synthetic seismograms. The Bayesian inversion approach uses a priori information to simultaneously search for the t* values, the common spectrum for all the records from an event, and the near-receiver amplification factors by using all the recordings from an event. When z, the ratio of Gaussian noise to signal, ≦ 0.1, the spectral ratio and Bayesian methods yield similar results with mean t* measurement errors &lt;0.05 sec. For 0.1 &lt; z ≦ 0.8, the mean errors of the spectral ratio method are larger than 0.1 sec and in some cases as large as 0.6 sec, while those of the Bayesian method are less than 0.08 sec. Frequency-independent t* and near-receiver amplification factors are assumed. A multi-step procedure is proposed to reject records with a large misfit.


2016 ◽  
Vol 55 (2) ◽  
Author(s):  
Lenin Ávila-Barrientos ◽  
Raúl R. Castro

We studied the seismic response of broadband stations located around the Gulf of California, Mexico, using the horizontal to vertical component spectral ratio method (HVSR). We analyzed 92 earthquakes recor-ded by the NARS-Baja and RESBAN networks, operated by CICESE. The database consists of events recorded between 2002 and 2006, with magnitudes ranging from 3.2 to 6.6. We rotated the records to find radial and transversal ground-motion components and we calculated Fourier spectra of S-wave windows recorded for the three ground-motion components. Then, we calculated HVSR for the individual components and the average of both horizontal components for every event. We analyze records from 20 stations located on sites with different geologic characteristics and we find azimuthal dependence on six of them that have amplification factors varying from 1.5 to up to 13 times at narrow back-azimuth ranges. We also find that sites with significant amplification factors (above three) show increasing amplification with increasing source magnitude.


2017 ◽  
Vol 17 (4B) ◽  
pp. 68-74
Author(s):  
Hung Nguyen - Tien ◽  
Phuong Nguyen-Hong ◽  
Minh Nguyen-Le ◽  
Wen Kuo-Liang ◽  
Nguyen Tran-An

In this study, the variation of microtremor motion is investigated using observation data in Hanoi and Vung Tau cities. The results of observation conducted by times and by seismometers are processed using the Nakamura's H/V spectral ratio method and compared. For investigation, the observations have been conducted with frequency of 27 observations per hour, 22 observations per month, 4 simultaneous observations using both Servo and K2 seismometers, and 12 simultaneous observation using 7 Servo seismometers. The results of data analysis show that the values of dominant frequency and shapes of the H/V spectral ratio obtained are similar in the frequency range from 0.4 Hz to 5 Hz, especially on the dominant frequency domain. The results confirm that the microtremor variation observations can be carried out with one observation time or by multiple seismometers.


Geosciences ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 186
Author(s):  
Alessandro Todrani ◽  
Giovanna Cultrera

On 24 August 2016, a Mw 6.0 earthquake started a damaging seismic sequence in central Italy. The historical center of Amatrice village reached the XI degree (MCS scale) but the high vulnerability alone could not explain the heavy damage. Unfortunately, at the time of the earthquake only AMT station, 200 m away from the downtown, recorded the mainshock, whereas tens of temporary stations were installed afterwards. We propose a method to simulate the ground motion affecting Amatrice, using the FFT amplitude recorded at AMT, which has been modified by the standard spectral ratio (SSR) computed at 14 seismic stations in downtown. We tested the procedure by comparing simulations and recordings of two later mainshocks (Mw 5.9 and Mw 6.5), underlining advantages and limits of the technique. The strong motion variability of simulations was related to the proximity of the seismic source, accounted for by the ground motion at AMT, and to the peculiar site effects, described by the transfer function at the sites. The largest amplification characterized the stations close to the NE hill edge and produced simulated values of intensity measures clearly above one standard deviation of the GMM expected for Italy, up to 1.6 g for PGA.


1997 ◽  
Vol 87 (2) ◽  
pp. 356-369
Author(s):  
Takumi Toshinawa ◽  
J. John Taber ◽  
John B. Berrill

Abstract The areal distribution of seismic ground-motion intensity in the city of Christchurch, New Zealand, during the 1994 Arthurs Pass Earthquake (ML 6.6) was evaluated using an intensity questionnaire together with local site amplifications inferred from seismic recordings and microtremors. In order to estimate the intensity in parts of the city where no intensity data were available, intensity data were compared to relative levels of shaking determined from both weak-motion and microtremor recordings. Weak ground-motion amplification factors were determined using ratios of ground accelerations at five sediment sites with respect to a rock site. Microtremor amplification factors were determined from horizontal-to-vertical spectral ratios at a 1-km spacing throughout the city. A positive correlation between weak-motion and microtremor amplification factors allowed extrapolation of microtremor amplification to estimated MM intensity (EMMI). EMMI ranged from 3 to 6 and was consistent with the questionnaire intensity and geological conditions and showed detailed information on the areal distribution of ground-motion intensity in the city.


2018 ◽  
Author(s):  
Marius Kriegerowski ◽  
Simone Cesca ◽  
Matthias Ohrnberger ◽  
Torsten Dahm ◽  
Frank Krüger

Abstract. We develop an amplitude spectral ratio method for event couples from clustered earthquakes to estimate seismic wave attenuation (Q−1) in the source volume. The method allows to study attenuation within the source region of earthquake swarms or aftershocks at depth, independent of wave path and attenuation between source region and surface station. We exploit the high frequency slope of phase spectra using multitaper spectral estimates. The method is tested using simulated full wavefield seismograms affected by recorded noise and finite source rupture. The synthetic tests verify the approach and show that solutions are independent of focal mechanisms, but also show that seismic noise may broaden the scatter of results. We apply the event couple spectral ratio method to North-West Bohemia, Czech Republic, a region characterized by the persistent occurrence of earthquake swarms in a confined source region at mid-crustal depth. Our method indicates a strong anomaly of high attenuation in the source region of the swarm with an averaged attenuation factor of Qp 


Sign in / Sign up

Export Citation Format

Share Document