scholarly journals Rapid and reliable healing of critical size bone defects with genetically modified sheep muscle

2015 ◽  
Vol 30 ◽  
pp. 118-131 ◽  
Author(s):  
F Liu ◽  
◽  
E Ferreira ◽  
RM Porter ◽  
V Glatt ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
pp. 395
Author(s):  
Antonio Scarano ◽  
Francesco Inchingolo ◽  
Biagio Rapone ◽  
Alberta Greco Lucchina ◽  
Erda Qorri ◽  
...  

Purpose: The aim of the present study is to evaluate the influence and efficacy of autologous platelets on bone regeneration in a rabbit defects model. Materials and Methods: A total of 12 critical size tibial defects were produced in six New Zealand rabbits: A total of six defects were filled with autologous platelet gel (APG) and six defects were maintained as untreated controls. No membranes were used to cover the bone osteotomies. The histology and histomorphometry were performed at four weeks on retrieved samples of both groups. Results: No complications were reported in any of the animals nor for the defects produced. A significantly higher lamellar and woven bone percentage was reported for the APG group with a lower level of marrow spaces (p < 0.05). Evidence of newly formed bone was found in the superficial portion of the bone defect of APG samples where no aspects of bone resorption were observed. Conclusions: The evidence of the present research revealed that APG increases new bone formation restricted to the cortical portion and induces more rapid healing in rabbit bone defects than in untreated defects.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 156
Author(s):  
Steffen Esslinger ◽  
Axel Grebhardt ◽  
Jonas Jaeger ◽  
Frank Kern ◽  
Andreas Killinger ◽  
...  

Bone defects introduced by accidents or diseases are very painful for the patient and their treatment leads to high expenses for the healthcare systems. When a bone defect reaches a critical size, the body is not able to restore this defect by itself. In this case a bone graft is required, either an autologous one taken from the patient or an artificial one made of a bioceramic material such as calcium phosphate. In this study β-tricalcium phosphate (β-TCP) was dispersed in a polymer matrix containing poly(lactic acid) (PLA) and poly(ethylene glycole) (PEG). These compounds were extruded to filaments, which were used for 3D printing of cylindrical scaffolds via Fused Deposition of Ceramics (FDC) technique. After shaping, the printed parts were debindered and sintered. The components combined macro- and micropores with a pore size of 1 mm and 0.01 mm, respectively, which are considered beneficial for bone healing. The compressive strength of sintered cylindrical scaffolds exceeded 72 MPa at an open porosity of 35%. The FDC approach seems promising for manufacturing patient specific bioceramic bone grafts.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Annika Kengelbach-Weigand ◽  
Carolina Thielen ◽  
Tobias Bäuerle ◽  
Rebekka Götzl ◽  
Thomas Gerber ◽  
...  

AbstractTissue engineering principles allow the generation of functional tissues for biomedical applications. Reconstruction of large-scale bone defects with tissue-engineered bone has still not entered the clinical routine. In the present study, a bone substitute in combination with mesenchymal stem cells (MSC) and endothelial progenitor cells (EPC) with or without growth factors BMP-2 and VEGF-A was prevascularized by an arteriovenous (AV) loop and transplanted into a critical-size tibia defect in the sheep model. With 3D imaging and immunohistochemistry, we could show that this approach is a feasible and simple alternative to the current clinical therapeutic option. This study serves as proof of concept for using large-scale transplantable, vascularized, and customizable bone, generated in a living organism for the reconstruction of load-bearing bone defects, individually tailored to the patient’s needs. With this approach in personalized medicine for the reconstruction of critical-size bone defects, regeneration of parts of the human body will become possible in the near future.


2021 ◽  
pp. 2100088
Author(s):  
Claire I. A. Houdt ◽  
Marianne K. E. Koolen ◽  
Paula M. Lopez‐Perez ◽  
Dietmar J. O. Ulrich ◽  
John A. Jansen ◽  
...  

2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Che Nor Zarida Che Seman ◽  
Zamzuri Zakaria ◽  
Zunariah Buyong ◽  
Mohd Shukrimi Awang ◽  
Ahmad Razali Md Ralib @ Md Raghib

Introduction: A novel injectable calcium phosphate bone cement (osteopaste) has been developed. Its potential application in orthopaedics as a filler of bone defects has been studied. The biomaterial was composed of tetra-calcium phosphate (TTCP) and tricalcium phosphate (TCP) powder. The aim of the present study was to evaluate the healing process of osteopaste in rabbit tibia. Materials and method: The implantation procedure was carried out on thirty-nine of New Zealand white rabbits. The in vivo bone formation was investigated by either implanting the Osteopaste, Jectos or MIIG – X3 into a critical size defect (CSD) model in the proximal tibial metaphysis. CSD without treatment served as negative control. After 1 day, 6 and 12 weeks, the rabbits were euthanized, the bone were harvested and subjected for analysis. Results: Radiological images and histological sections revealed integration of implants with bone tissue with no signs of graft rejection. There was direct contact between osteopaste material and host bone. The new bone was seen bridging the defect. Conclusion: The result showed that Osteopaste could be a new promising biomaterial for bone repair and has a potential in bone tissue engineering.


2009 ◽  
Vol 20 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Kemal Findikcioglu ◽  
Fulya Findikcioglu ◽  
Reha Yavuzer ◽  
Cigdem Elmas ◽  
Kenan Atabay

Sign in / Sign up

Export Citation Format

Share Document