scholarly journals Malathion Biodegradation by L. casei (NRRL1922) and L. acidophilus (NRRL 23431) in Fermented Skimmed Milk

2021 ◽  
Vol 15 (3) ◽  
pp. 1617-1624
Author(s):  
Shaimaa Basyouni Hassan El-Abd ◽  
Hala Mohamed Abu-Shady ◽  
Hosam Abdel Fattah Mohamed Elshebiny ◽  
Mohamed Abdel-Azim Abdel-Aziz Ebrahim ◽  
Hayam Abdelnabi Sayed

The aim of this study was to investigate and trace the biodegradation products of the pesticide malathion in a comparative manner by two different lactobacilli strains; L. casei (NRRL1922) and L. acidophilus (NRRL 23431). The two strains were cultivated separately into skimmed milk supplemented with 5 ng/ml malathion. After incubation under the appropriate conditions, randomized samples were taken at intervals 24, 48, 72 and 120 hours along with control samples and analyzed for the presence of malathion and its degradation products by the GC-MS spectrometry; As well as, analyzed to record the level of phosphatase enzyme which suggested to be involved in the biodegradation process. The results showed a high ability of the two tested strains to degrade malathion with a superiority of L. acidophilus (NRRL 23431) over L. casei (NRRL 1922). The level of phosphatase enzyme was elevated in both strains in the presence of malathion and decreased gradually upon the depletion of malathion from the sample, which reflects the role of the phosphatase enzyme in the biodegradation process.

1971 ◽  
Vol 26 (03) ◽  
pp. 523-525
Author(s):  
K Gibiński ◽  
B Lipiński ◽  
M Trusz-Gluza

SummaryWhile the native fibrinogen is not digested by the leucocyte proteases both the early and late FDP are digestible without any denaturating reagent. Thus, this reaction may occur in vivo indicating an unknown role of granulocytes in paracoagulation.


1982 ◽  
Vol 48 (02) ◽  
pp. 201-203 ◽  
Author(s):  
N A Marsh ◽  
P J Gaffney

SummaryThe effect of strenuous exercise on the fibrinolytic and coagulation mechanisms was examined in six healthy male subjects. Five min bicycle exercise at a work-rate of 800 to 1200 kpm. min−1 produced an abrupt increase in plasma plasminogen activator levels which disappeared after 90 min. However, there was no change in early or late fibrin degradation products nor was there a change in fibrinopeptide A levels or βthromboglobulin levels after exercise although activated partial thromboplastin times were significantly shortened. It is concluded that strenuous exercise does not produce any real increase in fibrinogen-fibrin conversion nor any real increase in the breakdown of these proteins. The role of exercise-induced release of plasminogen activator remains unclear, but probably helps to maintain plasma levels in a discontinuous manner concurrently with the continuous low-level secretion from the vascular wall. The shortening of partial thromboplastin time may be due to the raised levels of plasminogen activator changing the activation state of other coagulation factors.


1967 ◽  
Vol 45 (15) ◽  
pp. 1745-1760 ◽  
Author(s):  
A. Stoessl

Careful fractionation of extracts prepared from barley coleoptiles gave small amounts of pure hordatines A and B and substantial amounts of a mixture of their glucosides. The structures of the hordatines were deduced by degradative and spectroscopic studies and by the synthesis of some degradation products. A synthesis of racemic hordatine A analogous to its probable biogenesis was achieved by the oxidative coupling of coumaroylagmatine.The possible role of the hordatines in lignification is briefly discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Meenakshi Thakur ◽  
Baldev Singh Sohal

Disease control is largely based on the use of fungicides, bactericides, and insecticides—chemical compounds toxic to plant invaders, causative agents, or vectors of plant diseases. However, the hazardous effect of these chemicals or their degradation products on the environment and human health strongly necessitates the search for new, harmless means of disease control. There must be some natural phenomenon of induced resistance to protect plants from disease. Elicitors are compounds, which activate chemical defense in plants. Various biosynthetic pathways are activated in treated plants depending on the compound used. Commonly tested chemical elicitors are salicylic acid, methyl salicylate, benzothiadiazole, benzoic acid, chitosan, and so forth which affect production of phenolic compounds and activation of various defense-related enzymes in plants. Their introduction into agricultural practice could minimize the scope of chemical control, thus contributing to the development of sustainable agriculture. This paper chiefly highlights the uses of elicitors aiming to draw sufficient attention of researchers to the frontier research needed in this context.


2021 ◽  
Author(s):  
Florentina Laura Chiriac ◽  
Catalina Stoica ◽  
Iuiana Paun ◽  
Florinela Pirvu ◽  
Toma Galaon ◽  
...  

Abstract Organic UV-filters, including 4-hydroxybenzophenone (4-HBP) and 2,4-dihydroxybenzophenone (BP-1), are persistent emerging contaminants whose presence in the environment poses a threat to aquatic organisms due to their endocrine disruptor’s properties. For this reason, finding suitable technological processes for their safety and efficient removal from the environment represent a priority for the scientific community. To the author’s knowledge, until now, there are no studies reporting the biodegradation of 4-HBP and BP-1 by a single bacteria strain. In this paper, there were tested the 4-HBP and BP-1 biodegradation potential of two Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and two Gram-negative (Salmonella typhimurium and Serratia rubidae). The 4-HPB biodegradation process was observed only in the presence of Gram-negative bacterial strains. Thus, the biodegradation rates of 4-HBP reached up to 12.7% after 24h of incubation in presence of Salmonella thyphimurium and up to 24.0% after 24h of incubation with Serratia rubidae. Staphylococcus aureus was able to biodegrade 26.7% of BP-1, while Salmonella thiphymurium was able to biodegrade 14.7% of BP-1 after 24h of incubation. Their biodegradation products generated during the 4-HBP biodegradation process by Serratia rubidae were analyzed through LC-MS/MS analysis. The (bio)degradation products were benzophenone and a multi-hydroxylated derivative of 4-HBP and the degradation pathways were proposed. The data obtained in this study gave important information regarding the 4-HBP and BP-1 potential biodegradation by single bacterial strains.


Sign in / Sign up

Export Citation Format

Share Document