scholarly journals Cadmium Bioremediation Potential of Bacillus sp. and Cupriavidus sp.

2021 ◽  
Vol 15 (3) ◽  
pp. 1665-1680
Author(s):  
Sneh Lata ◽  
Tulika Mishra ◽  
Sukhminderjit Kaur

Heavy metals are extremely toxic and their presence in the environment is a known risk factor. Out of them, cadmium is known for its fatal effects on the environment, humans and soil. Bioremediation offers an economical solution for detoxifying such metals. So, the present study aimed to isolate Bacillus sp. and Cupriavidus sp. from the cadmium contaminated soils and studied their cadmium bioremediation potential. Strains that have exhibited good tolerance upto 1000 ppm and 1500 ppm of cadmium concentration and good absorption to cadmium were studied by scanning electron microscopy. An increase in the size of the bacterial cells was observed. The absorption of cadmium by bacterial cells was further confirmed by atomic absorption spectroscopy and found that the sorption rate of Bacillus sp. ECd004 was 87% and of Cupriavidus sp. SCd005 was 90%. Furthermore, these strains were exposed to cadmium contaminated soil in the form of bioformulations and their role in the rate of seed germination of Vigna radiata and Cicer aertinum and impact on seedlings growth was determined. Seed germination and growth rate was found to be double in comparison to the negative control. This investigation proves their efficacy to use in highly cadmium contaminated soils making them a suitable choice for bioremediation.

2021 ◽  
Vol 804 (4) ◽  
pp. 042036
Author(s):  
Wenxu Zhang ◽  
Lulu Guo ◽  
Jing Chen ◽  
Shengfang Liu ◽  
Yifan Wang ◽  
...  

1997 ◽  
Vol 60 (8) ◽  
pp. 943-947 ◽  
Author(s):  
PASCAL J. DELAQUIS ◽  
PETER L. SHOLBERG

A simple model system was constructed to evaluate the microbistatic and microbicidal properties of gaseous allyl isothiocyanate (AIT) against bacterial cells and fungal conidia deposited on agar surfaces. Salmonella typhimurium, Listeria monocytogenes Scott A, and Escherichia coli O157:H7 were inhibited when exposed to 1,000 μg AIT per liter. Pseudomonas corrugata, a Cytophaga species, and a fluorescent pseudomonad failed to grow in the presence of 500 μg AIT per liter. Germination and growth of Penicillium expansum, Aspergillus flavus, and Botrytis cinerea conidia was inhibited in the presence of 100 μg AIT per liter. Bactericidal and sporicidal activities varied with strain and increased with time of exposure, AIT concentration, and temperature. E. coli O157:H7 was the most resistant bacterial species tested.


1999 ◽  
Vol 30 (3) ◽  
pp. 242-248 ◽  
Author(s):  
Elizabeth Pelosi Teixeira ◽  
Marlene Braide Serafim ◽  
Maria Alice Cruz Höfling ◽  
Aureo T. Yamada ◽  
Antonio Fernando Pestana de Castro

One strain (S32) of Clostridium perfringens type A was isolated from a case of catarrhal enteritis of piglets. This strain was able to adhere to HeLa cells showing an adherence index (AI) of 25.15 ± 1.26 (mean ± 1 standard error of the mean). Treatment of the bacterial cells with trypsin (0.25mg/ml) decreased in 70%-80% the AI and metaperiodate (10mg/ml) abolished completely the adherence, suggesting that the structure responsible for this phenomenon was probably a glycoprotein. Heating of bacterial suspensions (100ºC/5 min) before carrying out the adhesion test decreased the AI rendering it equal to the negative controls. Rabbit homologous S32 antiserum inhibited the adherence up to dilutions of 1: 640, at least. The piglet ileal loop assay, carried out with strains S32 and Jab-1 (negative control) demonstrated that the strain S32 was able to adhere to the intestinal epithelial cells when examined after Gram staining. Transmission electron microcopy (TEM) demonstrated that S32 strain displayed a loose fibrillar material not seen with Jab-1. Stabilization of the bacterial cells with homologous antiserum of strain S32, followed by staining with rhuteniun red, revealed loose long fibrillar material on the outer surface of the cells, that sometimes could be seen spreading out from the cells and linking bacterial cells. The question whether this structure might be an adhesin for this strain of Cl. perfringes type A, perhaps playing a role in the pathogenesis of the catarrhal enteritis of piglets, is dependent on further studies.


2018 ◽  
Vol 60 (2) ◽  
pp. 421-435 ◽  
Author(s):  
Juan Wu ◽  
Chunxiao Liu ◽  
Ziguang Liu ◽  
Shuang Li ◽  
Dandan Li ◽  
...  

2015 ◽  
Vol 9 (2) ◽  
pp. 215-228 ◽  
Author(s):  
Anişoara Stratu ◽  
Naela Costică

AbstractThe paper presents the results of a study regarding the influence of treatment with zinc in different concentrations (50 mg∕l, 100 mg∕l, 200 mg ∕l, 300mg/l, 400 mg ∕l, 500 mg/l, 600 mg ∕l) on seed germination and growth in early ontogenetic stages ofCucumis meloL. We analyzed the following indicators: the percentage of germinated seeds; the length of root, the length of the hypocotyl and the length of the seedling; the number of the laterale roots; the tolerance index and the seedling vigor index. The results underline the specific variations of analysed indicators, depending on the concentrations used for the treatments of seeds. The concentrations used for treatment do not influence negatively the seed germination, but affected the seedling growth (especially the root elongation), the formation and growth process of lateral roots and the seedling vigour index. The delay effect of growth process is very pronounced in the case of high concentration.


2017 ◽  
Vol 2 (51) ◽  
pp. 114-122
Author(s):  
A. Habibi ◽  
◽  
B.K. Zayadan ◽  
A. Baizhigitova ◽  
S. Alemyar ◽  
...  

2020 ◽  
Vol 42 ◽  
Author(s):  
Michel Esper Neto ◽  
David W. Britt ◽  
Kyle Alan Jackson ◽  
Alessandro Lucca Braccini ◽  
Tadeu Takeyoshi Inoue ◽  
...  

Abstract: Fertilizer formulation alternatives that avoid unnecessary losses and environmental impacts are being investigated in agricultural management. Seed priming with nanofertilizers prior to planting, reduces concerns about non-target dispersion; however, priming formulations and concentrations must be carefully selected to avoid undesired effects. Here, seed germination and seedling development were evaluated after seed priming with CuO nanoparticles (NPs), CuO bulk and CuCl2. The seeds were immersed in priming solutions of 0, 20, 40, 80 and 160 mg.L−1 Cu for the three Cu sources. Following 8 hours priming, the seeds were evaluated for germination and vigor (first germination count). Root and shoot lengths were measured as well as shoot and root dry biomass. The copper NP did not show any toxic effects on corn seed germination and growth, and also promoted higher biomass when compared to the other Cu sources. On the other hand, CuCl2 primed seeds exhibited Cu-toxicity in roots and shoots for all concentrations tested. Bulk Cu priming results indicated the better role of NPs size effects. These findings support NP-seed priming as an alternative to delivery of essential micronutrients, such as copper, to corn seedlings.


Sign in / Sign up

Export Citation Format

Share Document