Attendance Recording System using Face Recognition

Author(s):  
Chandan R

Image processing automated attendance system is the system in which easiest way to record the attendance for organization .This system is based on the face detection and face recognition algorithms. For this we make use of “Image Processing” using “MATLAB”. The concept of this paper is to provide real time attendance of students in a class to the faculty’s data base. Automatically detects the student using the web camera and only detect the facial part of that particular image and the image undergoes the various techniques and will compare with reference image, Later the attendance of the student is updated .Thus with the help of this system time will be saved and it is so convenient to record the attendance at any time throughout the day.

2019 ◽  
Vol 8 (1) ◽  
pp. 239-245 ◽  
Author(s):  
Shamsul J. Elias ◽  
Shahirah Mohamed Hatim ◽  
Nur Anisah Hassan ◽  
Lily Marlia Abd Latif ◽  
R. Badlishah Ahmad ◽  
...  

Attendance is important for university students. However, generic way of taking attendance in universities may include various problems. Hence, a face recognition system for attendance taking is one way to combat the problem. This paper will present an automated system that will automatically saves student’s attendance into the database using face recognition method. The paper will elaborate on student attendance system, image processing, face detection and face recognition. The face detection part will be done by using viola-jones algorithm method while the face recognition part will be carried on by using local binary pattern (LBP) method. The system will ensure that the attendance taking process will be faster and more accurate.


The problem of Face detection and recognition is becoming a challenge due to the wide variety of faces and the complexity of the noises and background of image. In this paper we have used C-sharp and Haar algorithm to detect the face. First in this paper the image is taken with a web-camera, storing it in the database and then once again when the person comes in the frame the name of the person is displayed. This paper is done in C-sharp which was a bit difficult for us to do and we have combined both the face detection and the recognition. The proposed method has good output and a good recognition rate. The limitation of the paper is that it does not display the name of the person above the face. In the future work will be carried on the above said topic. While developing the code some sample codes in python but those were basic programs. So this paper aims to find a solution for it and developed in C-sharp. In finding the XML file of haarcascade frontal face detection we found some problems and had to do a bit of research in finding it. The code for face detection and face recognition were found in different places and in this paper the codes for the both has been combined and found some difficulty. To overcome the basic programs we have written the code in C-sharp and the difficulty which we faced in combining the two codes have been solved. The solution has been successfully implemented and the code is fully running and the output has been successfully achieved.


2019 ◽  
Vol 8 (4) ◽  
pp. 4803-4807

One of the most difficult tasks faced by the visually impaired students is identification of people. The rise in the field of image processing and the development of algorithms such as the face detection algorithm, face recognition algorithm gives motivation to develop devices that can assist the visually impaired. In this research, we represent the design and implementation of a facial recognition system for the visually impaired by using image processing. The device developed consists of a programmed raspberry pi hardware. The data is fed into the device in the form of images. The images are preprocessed and then the input image captured is processed inside the raspberry pi module using KNN algorithm, The face is recognized and the name is fed into text to speech conversion module. The visually impaired student will easily recognize the person before him using the device. Experiment results show high face detection accuracy and promising face recognition accuracy in suitable conditions. The device is built in such a way to improve cognition, interaction and communication of visually impaired students in schools and colleges. This system eliminates the need of a bulk computer since it employs a handy device with high processing power and reduced costs.


Author(s):  
Mohammad Jahangir Alam ◽  
Tanjia Chowdhury ◽  
Md. Shahzahan Ali

<p>We can identify human faces using a web Camera which is known as Face Detection.  This is a very effective technique in computer technology. There are used different types of attendance systems such as log in with the password, punch card, fingerprint, etc. In this research, we have introduced a facial recognition type of biometric system that can identify a specific face by analyzing and comparing patterns of a digital image.  This system is the latest login system based on face detection. Primarily, the device captures the face images and stores the captured images into the specific path of the computer relating the information into a database. When any body tries to enter into any room or premises through this login system, the system captures the image of that particular person and matches the image with the stored image. If this image matches with the stored image then the system allows the person to enter the room or premises, otherwise the system denies entry. This face recognition login system is very effective, reliable and secured. This research has used the Viola and Jones algorithm for face detection and ORB for image matching in face recognition and Java, MySql, OpenCV, and iReport are used for implementation.</p>


Technology has been playing a vital role in this world, where the work and the work place become digitalized. The paper reviews on monitoring the attendance using image processing, which involves face detection, labeling the detected face, training a classifier based on labeled dataset, and face recognition. Former methods on monitoring the attendance includes signing the attendance registry, fingerprint detection and barcode scanning where delinquency may occur. To prevail over and to take the technology to subsequent level image processing has been incorporated. Proposed system employs, capturing of the face in various dimensions, labeling of the captured images that is stored in the database for training and testing phase. Using the gathered data the machine is trained to recognize the face to provide access to the employees or students in the organization. The final phase is to take the attendance and maintain the record on attending hours using face recognition technique in which the input image of the employees or students is given.


2014 ◽  
Vol 971-973 ◽  
pp. 1710-1713
Author(s):  
Wen Huan Wu ◽  
Ying Jun Zhao ◽  
Yong Fei Che

Face detection is the key point in automatic face recognition system. This paper introduces the face detection algorithm with a cascade of Adaboost classifiers and how to configure OpenCV in MCVS. Using OpenCV realized the face detection. And a detailed analysis of the face detection results is presented. Through experiment, we found that the method used in this article has a high accuracy rate and better real-time.


Author(s):  
Vikram Kulkarni ◽  
Viswaprakash Babu

In this proposed embedded car security system, FDS(Face Detection System) is used to detect the face of the driver and compare it with the predefined face. For example, in the night when the car’s owner is sleeping and someone theft the car then FDS obtains images by one tiny web camera which can be hidden easily in somewhere in the car. FDS compares the obtained image with the predefined images if the image doesn’t match, then the information is sent to the owner through MMS. So now owner can obtain the image of the thief in his mobile as well as he can trace the location through GPS. The location of the car as well as its speed can be displayed to the owner through SMS. So by using this system, owner can identify the thief image as well as the location of the car This system prototype is built on the base of one embedded platform in which one SoC named “SEP4020”(works at 100MHz) controls all the processes .Experimental results illuminate the validity of this car security system.


The proposed system generally results a solution to some of the problems which occurs in colleges and schools by providing a monitoring camera with the help of “Artificial Intelligence (AI)” . The main problem which can be occurred is wastage of time in taking the attendance manually or through any biometric sensors. The next problem which can be solved is to control the usage of electricity in classrooms when students are not in class. When the videos are getting recorded with the help of monitoring cameras, at the same time the head counting and face detection of the students present will also be done. When the strength of the class is zero ,the head counting also results to zero. The electricity can also be saved at the same time when people are not present in the classroom. The face recognition is the easiest process which can be done for marking the attendance, where the attendance is marked automatically. This process also helps to prevent the fake attendance. Face recognition and detection is generally based on line edge mapping to attain the identity of the student and also meets the wants of attendance in the universities and schools. The image of the student is to be captured and checked with the database simultaneously and marks the attendance of the particular student. The video gets recorded all the time and checks whether the student remains in class for the entire period.The attendance marking system with the help of technology is very essential for both the teachers and students.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xin Cheng ◽  
Hongfei Wang ◽  
Jingmei Zhou ◽  
Hui Chang ◽  
Xiangmo Zhao ◽  
...  

For face recognition systems, liveness detection can effectively avoid illegal fraud and improve the safety of face recognition systems. Common face attacks include photo printing and video replay attacks. This paper studied the differences between photos, videos, and real faces in static texture and motion information and proposed a living detection structure based on feature fusion and attention mechanism, Dynamic and Texture Fusion Attention Network (DTFA-Net). We proposed a dynamic information fusion structure of an interchannel attention block to fuse the magnitude and direction of optical flow to extract facial motion features. In addition, for the face detection failure of HOG algorithm under complex illumination, we proposed an improved Gamma image preprocessing algorithm, which effectively improved the face detection ability. We conducted experiments on the CASIA-MFSD and Replay Attack Databases. According to experiments, the DTFA-Net proposed in this paper achieved 6.9% EER on CASIA and 2.2% HTER on Replay Attack that was comparable to other methods.


2020 ◽  
Vol 32 ◽  
pp. 03011
Author(s):  
Divya Kapil ◽  
Aishwarya Kamtam ◽  
Akhil Kedare ◽  
Smita Bharne

Surveillance systems are used for the monitoring the activities directly or indirectly. Most of the surveillance system uses the face recognition techniques to monitor the activities. This system builds the automated contemporary biometric surveillance system based on deep learning. The application of the system can be used in various ways. The face prints of the persons will be stored inside the database with relevant statistics and does the face recognition. When any unknown face is recognized then alarm will ring so one can alert the security systems and in addition actions will be taken. The system learns changes while detecting faces automatically using deep learning and gain correct accuracy in face recognition. A deep learning method including Convolutional Neural Network (CNN) is having great significance in the area of image processing. This system can be applicable to monitor the activities for the housing society premises.


Sign in / Sign up

Export Citation Format

Share Document