scholarly journals Web Application: Time Series-COVID19 Prediction

Author(s):  
Sai Charan Thummalapudi
2020 ◽  
Author(s):  
Raul Bardaji ◽  
Jaume Piera ◽  
Juanjo Dañobeitia ◽  
Ivan Rodero

<p>In marine sciences, the way in which many research groups work is changing as scientists use published data to complement their field campaign data online, thanks to the large increase in the number of open access observations. Many institutions are making great efforts to provide the data following FAIR principles (findability, accessibility, interoperability, and reusability) and are bringing together interdisciplinary teams of data scientists and data engineers.</p><p>There are different platforms for downloading marine and oceanographic data and many libraries to analyze data. However, the reality is that scientists continue to have difficulty finding the data they need. On many occasions, data platforms provide information about the metadata, but they do not show any underlying graph of the data that can be downloaded. Sometimes, scientists cannot download only the data parameters of interest and have to download huge amounts of data with other not useful parameters for their studies. On other occasions, the platform allows to download the data parameters of interest but offers the time-series data as many files, and it is the scientist who has to join the pieces of data into a single dataset to be analyzed correctly. EMSO ERIC is developing a data service that helps reduce the burden of scientists to search and acquire data as much as possible.</p><p> </p><p>We present the EMSO ERIC DataLab web application, which provides users with capabilities to preview harmonized data from the EMSO ERIC observatories, perform some basic data analyses, create or modify datasets, and download them. Use case scenarios of the DataLab include the creation of a NetCDF file with time-series information across EMSO ERIC observatories.</p><p>The DataLab has been developed using engineering best practices and trend technologies for big data management, including specialized Python libraries for web environments and oceanographic data analysis, such as Plotly, Dash, Flask, and the Module for Ocean Observatory Data Analysis (MOODA).</p>


2021 ◽  
Vol 7 ◽  
Author(s):  
Martin Palma ◽  
Alessandro Zandonai ◽  
Luca Cattani ◽  
Johannes Klotz ◽  
Giulio Genova ◽  
...  

Easily accessible data is an essential requirement for scientific data analysis. The Data Browser Matsch | Mazia was designed to provide a fast and comprehensible solution to access, visualize and download the microclimatic measurements of the IT 25 LT(S)ER Match | Mazia research site in South Tyrol, Northern Italy, with the overall aim to provide straightforward data accessibility and enhance dissemination. Data Browser Matsch | Mazia is a user-friendly web-based application to visualize and download micrometeorological and biophysical time series of the Long-Term Socio-Ecological Research site Matsch | Mazia in South Tyrol, Italy. It is designed both for the general public and researchers. The Data Browser Matsch | Mazia drop-down menus allow the user to query the InfluxDB database in the backend by selecting the measurements, time range, land use and elevation. Interactive Grafana dashboards show dynamic graphs of the time series.


2021 ◽  
Author(s):  
Alessandro Rabiolo ◽  
Eugenio Alladio ◽  
Esteban Morales ◽  
Andrew I McNaught ◽  
Francesco Bandello ◽  
...  

ABSTRACTBackgroundPrevious studies have suggested associations between trends of web searches and COVID-19 traditional metrics. It remains unclear whether models incorporating trends of digital searches lead to better predictions.MethodsAn open-access web application was developed to evaluate Google Trends and traditional COVID-19 metrics via an interactive framework based on principal components analysis (PCA) and time series modelling. The app facilitates the analysis of symptom search behavior associated with COVID-19 disease in 188 countries. In this study, we selected data of eight countries as case studies to represent all continents. PCA was used to perform data dimensionality reduction, and three different time series models (Error Trend Seasonality, Autoregressive integrated moving average, and feed-forward neural network autoregression) were used to predict COVID-19 metrics in the upcoming 14 days. The models were compared in terms of prediction ability using the root-mean-square error (RMSE) of the first principal component (PC1). Predictive ability of models generated with both Google Trends data and conventional COVID-19 metrics were compared with those fitted with conventional COVID-19 metrics only.FindingsThe degree of correlation and the best time-lag varied as a function of the selected country and topic searched; in general, the optimal time-lag was within 15 days. Overall, predictions of PC1 based on both searched termed and COVID-19 traditional metrics performed better than those not including Google searches (median [IQR]: 1.43 [0.74-2.36] vs. 1.78 [0.95-2.88], respectively), but the improvement in prediction varied as a function of the selected country and timeframe. The best model varied as a function of country, time range, and period of time selected. Models based on a 7-day moving average led to considerably smaller RMSE values as opposed to those calculated with raw data (median [IQR]: 0.74 [0.47-1.22] vs. 2.15 [1.55-3.89], respectively).InterpretationThe inclusion of digital online searches in statistical models may improve the prediction of the COVID-19 epidemic.FundingEOSCsecretariat.eu has received funding from the European Union’s Horizon Programme call H2020-INFRAEOSC-05-2018-2019, grant Agreement number 831644.


2021 ◽  
Author(s):  
Alessandro Rabiolo ◽  
Eugenio Alladio ◽  
Esteban Morales ◽  
Andrew Ian McNaught ◽  
Francesco Bandello ◽  
...  

BACKGROUND Previous studies have suggested associations between trends of web searches and COVID-19 traditional metrics. It remains unclear whether models incorporating trends of digital searches lead to better predictions. OBJECTIVE The aim of this study is to investigate the relationship between Google Trends searches of symptoms associated with COVID-19 and confirmed COVID-19 cases and deaths. We aim to develop predictive models to forecast the COVID-19 epidemic based on a combination of Google Trends searches of symptoms and conventional COVID-19 metrics. METHODS An open-access web application was developed to evaluate Google Trends and traditional COVID-19 metrics via an interactive framework based on principal component analysis (PCA) and time series modeling. The application facilitates the analysis of symptom search behavior associated with COVID-19 disease in 188 countries. In this study, we selected the data of nine countries as case studies to represent all continents. PCA was used to perform data dimensionality reduction, and three different time series models (error, trend, seasonality; autoregressive integrated moving average; and feed-forward neural network autoregression) were used to predict COVID-19 metrics in the upcoming 14 days. The models were compared in terms of prediction ability using the root mean square error (RMSE) of the first principal component (PC1). The predictive abilities of models generated with both Google Trends data and conventional COVID-19 metrics were compared with those fitted with conventional COVID-19 metrics only. RESULTS The degree of correlation and the best time lag varied as a function of the selected country and topic searched; in general, the optimal time lag was within 15 days. Overall, predictions of PC1 based on both search terms and COVID-19 traditional metrics performed better than those not including Google searches (median 1.56, IQR 0.90-2.49 versus median 1.87, IQR 1.09-2.95, respectively), but the improvement in prediction varied as a function of the selected country and time frame. The best model varied as a function of country, time range, and period of time selected. Models based on a 7-day moving average led to considerably smaller RMSE values as opposed to those calculated with raw data (median 0.90, IQR 0.50-1.53 versus median 2.27, IQR 1.62-3.74, respectively). CONCLUSIONS The inclusion of digital online searches in statistical models may improve the nowcasting and forecasting of the COVID-19 epidemic and could be used as one of the surveillance systems of COVID-19 disease. We provide a free web application operating with nearly real-time data that anyone can use to make predictions of outbreaks, improve estimates of the dynamics of ongoing epidemics, and predict future or rebound waves.


Author(s):  
Danielle C. M. Ristow ◽  
Elisa Henning ◽  
Andreza Kalbusch ◽  
Cesar E. Petersen

Abstract Technology has been increasingly applied in search for excellence in water resource management. Tools such as demand-forecasting models provide information for utility companies to make operational, tactical and strategic decisions. Also, the performance of water distribution systems can be improved by anticipating consumption values. This work aimed to develop models to conduct monthly urban water demand forecasts by analyzing time series, and adjusting and testing forecast models by consumption category, which can be applied to any location. Open language R was used, with automatic procedures for selection, adjustment, model quality assessment and forecasts. The case study was conducted in the city of Joinville, with water consumption forecasts for the first semester of 2018. The results showed that the seasonal ARIMA method proved to be more adequate to predict water consumption in four out of five categories, with mean absolute percentage errors varying from 1.19 to 15.74%. In addition, a web application to conduct water consumption forecasts was developed.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander Ullrich ◽  
Fabian Eckelmann ◽  
Stephane Ghozzi

ObjectiveProviding an integrative tool for public health experts to rapidly assess the epidemiological situation based on data streams from different surveillance systems and relevant external factors, e.g. weather or socio-economic conditions. The efficient implementation in a modular architecture of disease- or task-specific visualisations and interactions, their combination in dashboards and integration in a consistent, general web application. The user-oriented development through an iterative process in close collaboration with epidemiologists.IntroductionThe mission of the Infectious-Disease-Epidemiology Department at the Robert Koch Institute is the prevention, detection and control of infections in the German population. For this purpose it has a set of surveillance and outbreak-detection systems in place. Some of these cover a wide range of diseases, e.g. the traditional surveillance of about 80 notifiable diseases, while others are specialised for the timely assessment of only one or a few diseases, e.g. participatory syndromic surveillance of acute respiratory infections. Many different such data sources have to be combined to allow a holistic view of the epidemiological situation. The continuous integration of many heterogeneous data streams into a readily available and accessible product remains a big challenge in infectious-disease epidemiology.MethodsThe first step in the development of visualisation and analysis dashboards was the identification of relevant epidemiological questions. This was done through the review and analysis of existing epidemiological tools and workflows, among others through surveys and interviews. With the help of domain experts we identified the relevant data sources for specific tasks. We then chose data visualisations that are common in the field of infectious-disease epidemiology, e.g. disease maps, epicurves and age pyramids, as well as visualisations that were suggested by experts, e.g. time-series graph with severity thresholds. In an iterative process of propositions and expert feedback, we refined the user experience, adjusting variables, control parameters and the layout.We have used two different technologies for the dashboard development. For tasks that needed extensive data integration and statistical computing we used the Shiny web-framework of the statistical programming language R, which allows for a seamless integration of data-wrangling, statistical methods and web design with interactive visualizations. For tasks where a more flexible and fluid user experience is desired and for the integration in a general web application, we used the more versatile single-page application (SPA) framework AngularJS in combination with ASP.NET. In both approaches we used standard open-source visualisation libraries such as Leaflet or Plotly. The dashboards were designed in a modular way, abstracting data sources and visualisations in order to reuse them and adapt them easily to other data sources. Where applicable, interfaces to live data bases and OLAP cubes where developed and implemented.ResultsWe have developed a set of dashboards that allow the exploration of infectious-disease data, each designed for a specific epidemiological task. While still under active development, the dashboards are accepted and routinely used by epidemiologists of the Robert Koch Institute. The expansion to other user groups (e.g. local health agencies) is planned for the near future. Further dashboards will be developed as new epidemiological tasks are identified.A general dashboard ("Signals Dashboard", see Figure 1 A) is displaying laboratory confirmed cases and their distribution across time, space, age and sex in linked widgets. Additionally it highlights anomalous clusters of cases in all widgets and lists the anomalies in an interactive table. The dashboard is available for all (approx. 80) notifiable diseases. The "Severity Dashboard" (Figure 1 B) integrates influenza-related syndromic data, virological information and laboratory confirmed cases. The indicators transmissibility, seriousness and impact, as defined by the PISA guidelines of the World Health Organization, are displayed in time-series charts (absolute and cumulative) and tables; parameter-adjustable severity assessments are computed on the fly. This dashboard has then been adapted to monitor in real time the severity of rotavirus infections. One further dashboard focusses on vaccine-preventable diseases and allows the simultaneous exploration of incidences and vaccination rates through synchronized maps and histograms. Lastly, a "Context Dashboard" enables the exploration of possible connections between tick-related diseases such as TBE and Lyme disease on the one hand, and weather and environment as external factors on the other. It provides visual comparisons through maps and time-series charts, correlation analysis and statistical modeling. The user can choose a set of (lagged) variables to be included in a linear statistical model, which is immediately trained. The contributions and significance of the chosen factors, as well as the fit and prediction accuracies, are displayed in tables, scatter plots and time series. Both "Signals" and "Severity" dashboards serve the rapid assessment of the epidemiological situation and as such display live data as read from internal databases and cubes. The others are at present rather meant for retrospective analyses but will be connected to live data streams in the future.ConclusionsDashboards can provide a way to integrate different epidemiological data streams and statistical methods, offering experts a useful tool to assess the epidemiological situation. Close collaboration between epidemiologists and data scientists in the design and development is beneficial to the relevance and sustainability of such a tool. 


2015 ◽  
Vol 18 (2) ◽  
pp. 277-287 ◽  
Author(s):  
Gonzalo E. Espinoza-Dávalos ◽  
David K. Arctur ◽  
William Teng ◽  
David R. Maidment ◽  
Irene García-Martí ◽  
...  

The purpose of this research is to enable better understanding of current environmental conditions through the relations of environmental variables to the historical record. Our approach is to organize and visualize land surface model (LSM) outputs and statistics in a web application, using the latest technologies in geographic information systems (GISs), web services, and cloud computing. The North American Land Data Assimilation System (NLDAS-2) (http://ldas.gsfc.nasa.gov/nldas/; Documentation: ftp://hydro1.sci.gsfc.nasa.gov/data/s4pa/NLDAS/README.NLDAS2.pdf) drives four LSM (e.g., Noah) (http://ldas.gsfc.nasa.gov/nldas/NLDAS2model.php) that simulate a suite of states and fluxes for central North America. The NLDAS-2 model output is accessible via multiple methods, designed to handle the outputs as time-step arrays. To facilitate data access as time series, selected NLDAS-Noah variables have been replicated by NASA as point-location files. These time series files or ‘data rods’ are accessible through web services. In this research, 35-year historical daily cumulative distribution functions (CDFs) are constructed using the data rods for the top-meter soil moisture variable. The statistical data are stored in and served from the cloud. The latest values in the Noah model are compared with the CDFs and displayed in a web application. Two case studies illustrate the utility of this approach: the 2011 Texas drought, and the 31 October 2013 flash flood in Austin, Texas.


2021 ◽  
Vol 11 (4) ◽  
pp. 1955
Author(s):  
Jorge L. Serras ◽  
Susana Vinga ◽  
Alexandra M. Carvalho

Outliers are observations suspected of not having been generated by the underlying process of the remaining data. Many applications require a way of identifying interesting or unusual patterns in multivariate time series (MTS), now ubiquitous in many applications; however, most outlier detection methods focus solely on univariate series. We propose a complete and automatic outlier detection system covering the pre-processing of MTS data that adopts a dynamic Bayesian network (DBN) modeling algorithm. The latter encodes optimal inter and intra-time slice connectivity of transition networks capable of capturing conditional dependencies in MTS datasets. A sliding window mechanism is employed to score each MTS transition gradually, given the DBN model. Two score-analysis strategies are studied to assure an automatic classification of anomalous data. The proposed approach is first validated in simulated data, demonstrating the performance of the system. Further experiments are made on real data, by uncovering anomalies in distinct scenarios such as electrocardiogram series, mortality rate data, and written pen digits. The developed system proved beneficial in capturing unusual data resulting from temporal contexts, being suitable for any MTS scenario. A widely accessible web application employing the complete system is publicly available jointly with a tutorial.


Sign in / Sign up

Export Citation Format

Share Document