scholarly journals Comparative Study on Seismic Analysis of Multi Storied RC Framed Structure with and without Diaphragm Discontinuity

Author(s):  
Deepali Vasudev

Abstract: Any Structure that is designed in today’s world has to be designed not only for aesthetics but also for stability. These days high rise multi storied structures are quiet prominent. These types of structures, should not only be designed for aesthetic point of view but also must be designed to resist earthquake forces which are subjected on these structures. These earthquake forces acting on the structures are also known as seismic forces. Due to architectural purposes, some buildings, have openings, provided in them, this creates structural discontinuities in the building. These openings or discontinuities can change the load transfer path of the structures which may cause significant change in the building behavior, under the application of the seismic forces. In this paper pushover analysis is carried out to study the behavior of the building in case of architectural opening for staircase or cut outs etc which results in discontinuity in the structure. Keywords: Diaphragm, Discontinuity, ETABS, Pushover Analysis, Seismic

Author(s):  
Ashutosh Shrivastava ◽  
Rajesh Chaturvedi

Nowadays, as in the urban areas the space available for the construction of buildings is limited. So in limited space we have to construct such type of buildings which can be used for multiple purposes such as lobbies, car parking etc. To fulfill this demand, high rise buildings is the only option available. The performance of a high rise building during strong earthquake motion depends on the distribution of stiffness, strength and mass along both the vertical and horizontal directions. If there is discontinuity in stiffness, strength and mass between adjoining storeys of a building then such a building is known as irregular building. The present study focuses on the seismic performance of regular and vertical irregular building with and without masonary infills. In the present study G+11 building is considered for the analysis with modelling and analysis done on ETABS software v17.0.1. The earthquake forces are calculated as per IS 1893 (part 1): 2016 for seismic zone III. The width of strut is calculated by using equivalent diagonal strut method. Total five models are considered for the analysis i.e. regular building with bare frame, regular building with masonary infill, soft storey building with open ground storey, mass irregular building with masonary infill and vertical geometric irregular building with masonary infill. The non-linear static analysis (pushover analysis) and linear dynamic analysis (response spectrum analysis) are performed for all the models and thereby compare their results. From analysis, the parameters like performance point, time period, maximum storey displacement, maximum storey drifts, storey shears and overturning moments are determined and also comparative study is done for all the models. From the comparison, it is observed that the vertical geometric irregular building shows better performance under seismic loading and bare frame building shows inferior performance. Moreover, the performance of masonary infilled frame building is f


Seismic analysis of structural systems with floor diaphragms has been a requisite in the recent past. The duty of a structural engineer is to be prudent about the behavior of every structural system adopted. Amongst the structural systems that are adopted world over, diaphragm with rigid and semi-rigid floor plate are adopted widely in the analysis. This research focuses on the backstay effect i.e. podium structural interaction with the tower area and consideration of retaining wall as increment of lateral stiffness as specified in latest tall building code IS6700:2016 for low and high rise structures. In the current study models were prepared with low to high rise storeys with rigid and flexible diaphragms considering backstay diaphragm placing tower at center and corner. The models were subjected to seismic forces; response spectrum along with the combination of the gravity loads. The structural responses like natural periods, base shear, displacement and inter storey drift were also studied.


2021 ◽  
Vol 1197 (1) ◽  
pp. 012018
Author(s):  
Neha Pawar ◽  
Kuldeep Dabhekar ◽  
Prakash Patil ◽  
Isha Khedikar ◽  
Santosh Jaju

Abstract In Recent Trends, buildings are planned to fulfill their architectural and functional requirements but sometimes this creates complexity in its structural strength. One such element is the floating column. It is used to boost Floor Space Index. The Earthquake forces developed at different storey need to be carried down by the shortest path. Discontinuity in the load transfer path leads to poor seismic performance of the structure. Hence as per IS: CODE-1893:2016 clause no-7.1, the Construction of Floating Column is restricted. But there is no limit to research work. The purpose of this research is to analyze the structural irregularity occurring due to floating columns and also to find out the optimized solution to decrease the risk due to earthquake excitation. For Simplicity, the focus of this study is limited to symmetrical G+8 Structure. Finite element Based ETabs software has been used for the analysis. Response spectrum analysis was done in the software. Total ten models are considered with different conditions and their results were compared in terms of Storey displacement, Storey drifts, Base Shear and Overturning moments. All results are compared with the conventional building.


Author(s):  
Mr. Suryakant Pandey

Abstract: In this day and age of urbanization, there is a strong need for a large-scale high-rise apartment building in every city but high-rise construction systems are extremely difficult to construct in any seismic region due to the intense and disruptive nature of seismic forces. Seismic forces have the highest risk of causing the most harm to high-rise buildings. To meet this need, the Civil Engineering industry is constantly developing new groundbreaking techniques. To solve this problem RCC or steel bracings are provided in high-rise buildings which help to the low down the effect of seismic and wind forces. The main objective of this paper is to locate an effective position and pattern of the RCC X-bracing system in the L- shape multi-storey building which is subjected to seismic forces. According to a previous reference paper, X-bracing produces better results than other bracing systems. Analysis the seven types of frame models are taken – (1) Normal L-shape building without bracing, (2) Xbracing are provided at the face of L-shape building, (3) X-bracing are provided alternative pattern at the face of L-shape building from bottom to top floor, (4) X- bracing are provided zig-zag pattern at the face of L-shape building, (5) X-bracing are provided at the corner of L-shape building, (6) X-bracing are provided alternative pattern at the corner of L-shape building from bottom to the top floor, (7) X-bracing are provided zig-zag pattern at the corner of L-shape building. Developed and evaluated by response spectrum analysis method (Linear dynamic analysis) as per IS 1893-2000 using STAAD PRO V8i. In the present work G+12 storey, the L-shape frame structure is analyzed by using X-bracing. It is analyzed and the results of the Following Parameters are taken - (1) Peak storey shear, (2) Base shear, (3) Nodal displacement, (4) Maximum bending moment, (5) Total quantity of steel in the whole structure, (6) Total volume of concrete in the whole structure are evaluated and compared. Keywords: RCC Bracing, Seismic Behavior, Seismic Analysis, Peak Storey Shear, Base shear, Nodal Displacements, Maximum Bending Moment, The Total Quantity of Steel, The Total Volume of Concrete


2010 ◽  
Vol 163-167 ◽  
pp. 3918-3924
Author(s):  
Jun Teng ◽  
Hu Bing Tu ◽  
Huan Lin Mao ◽  
Ying Liang Qiu

As an important seismic analysis method, Pushover is widely used in high-rise buildings, while there is still lack of investigation on applicability of Pushover analysis on diagonal grid structural system. Two structures with height 144 and 288 meters are respectively built, and then Pushover analysis and Incremental dynamic analysis are conducted. Results calculated by two different methods are compared, including top displacement vs. base shear curve, inter-story drift vs. inter-story shear curve, distribution of inter-story drift angle along the building height and plastic developing sequence of structural weak positions. Meanwhile, influence of three lateral load patterns (uniform pattern,inverted triangle pattern and SRSS pattern) on the results is investigated. Analysis results demonstrate that Pushover analysis can in some extent reflect seismic performance of structures and SRSS load pattern can better capture global and local information of structures compared with other two patterns.


2010 ◽  
Vol 163-167 ◽  
pp. 2285-2291
Author(s):  
Yue Chen

The height of a complex supertall building is 250m. The central RC tube and peripheral SRC frame with two outrigger trusses are employed to resist vertical and lateral loads. It is classified as B grade complex tall building due to the structural characteristic. Due to the over-restriction and complexity of the super tall-building, Pushover Analysis is carried out in order to find it’s behaviors under rare intensity earthquakes. The analytical results demonstrate that the SRC supertall building with high level transfer story possesses good energy-consuming capacity, ductility and ideal yield failure mechanism under rare seismic excitation. Seismic performance of the SRC supertall building is evaluated through Capacity Spectrum Method and good results are obtained.


Author(s):  
Ankur Verma

Abstract: Today, larger part of designs around us are built up concrete cement (RCC) outlined constructions. To forestall harm because of quake there is a need to foster powerful procedure to expand the strength and flexibility of elevated structures. Shear wall are steadier and more pliable and thus can bear more even loads. In this paper, we have proposed a relative report between block facade, shear divider and uncovered casing by using ETABS programming. This review is essentially centered around seismic conduct of G+12 building. The outcomes are talked about as far as base shear, sidelong relocation, story float, story solidness and normal period for every one of the three models. We find that shear wall has least parallel uprooting and least time span when contrasted and block facade and uncovered edge. Likewise, we track down that the shear divider model is more adaptable because of lesser float when contrasted and different models. The upsides of removal and float for shear wall is likewise not as much as block facade since the tallness of the structure increments. Keywords: shear wall, bare frame, Response spectrum, Earthquake, ETABS


2021 ◽  
Vol 13 ◽  
pp. 184797902199450
Author(s):  
Reyner Pérez-Campdesuñer ◽  
Gelmar García-Vidal ◽  
Alexander Sánchez-Rodríguez ◽  
Rodobaldo Martínez-Vivar ◽  
Margarita de Miguel-Guzmán ◽  
...  

Entrepreneurship is an important part of any economy today regardless of its level of development. However, not in all contexts do entrepreneurs operate in the same way, nor are they motivated by the same factors. This research seeks to identify possible coincidence factors and differences between entrepreneurs that operate in different contexts from the point of view of their historical evolution, the duration of these and the economic and social model applied in the countries. Specifically, a comparative study is carried out between entrepreneurs from the republics of Ecuador and Cuba considering various variables such as: personality characteristics (attitude to failure, risk, perseverance and innovation), use of the available time fund for work in entrepreneurship; Impact of the environment in relation to: government regulations, taxes, level of competition and availability of suppliers, as well as the structure of personal expenses projected in the short and long term that entrepreneurs assume as a stimulus for their actions. For the development of the study, a description of the behavior of the variables was initially made and later, by hypothesis testing, to verify differences and similarities between both populations. The study allowed us to identify common and divergent aspects between both populations analyzed. Similarly, it showed how differences in the administrative and financial environment in which entrepreneurs operate generate changes in their priorities and projections.


Sign in / Sign up

Export Citation Format

Share Document