Nonlinear Seismic Analysis and Structural Performance Evaluation of a Complex High-Rise Building

2010 ◽  
Vol 163-167 ◽  
pp. 2285-2291
Author(s):  
Yue Chen

The height of a complex supertall building is 250m. The central RC tube and peripheral SRC frame with two outrigger trusses are employed to resist vertical and lateral loads. It is classified as B grade complex tall building due to the structural characteristic. Due to the over-restriction and complexity of the super tall-building, Pushover Analysis is carried out in order to find it’s behaviors under rare intensity earthquakes. The analytical results demonstrate that the SRC supertall building with high level transfer story possesses good energy-consuming capacity, ductility and ideal yield failure mechanism under rare seismic excitation. Seismic performance of the SRC supertall building is evaluated through Capacity Spectrum Method and good results are obtained.

Author(s):  
Ashutosh Shrivastava ◽  
Rajesh Chaturvedi

Nowadays, as in the urban areas the space available for the construction of buildings is limited. So in limited space we have to construct such type of buildings which can be used for multiple purposes such as lobbies, car parking etc. To fulfill this demand, high rise buildings is the only option available. The performance of a high rise building during strong earthquake motion depends on the distribution of stiffness, strength and mass along both the vertical and horizontal directions. If there is discontinuity in stiffness, strength and mass between adjoining storeys of a building then such a building is known as irregular building. The present study focuses on the seismic performance of regular and vertical irregular building with and without masonary infills. In the present study G+11 building is considered for the analysis with modelling and analysis done on ETABS software v17.0.1. The earthquake forces are calculated as per IS 1893 (part 1): 2016 for seismic zone III. The width of strut is calculated by using equivalent diagonal strut method. Total five models are considered for the analysis i.e. regular building with bare frame, regular building with masonary infill, soft storey building with open ground storey, mass irregular building with masonary infill and vertical geometric irregular building with masonary infill. The non-linear static analysis (pushover analysis) and linear dynamic analysis (response spectrum analysis) are performed for all the models and thereby compare their results. From analysis, the parameters like performance point, time period, maximum storey displacement, maximum storey drifts, storey shears and overturning moments are determined and also comparative study is done for all the models. From the comparison, it is observed that the vertical geometric irregular building shows better performance under seismic loading and bare frame building shows inferior performance. Moreover, the performance of masonary infilled frame building is f


Seismic analysis of structural systems with floor diaphragms has been a requisite in the recent past. The duty of a structural engineer is to be prudent about the behavior of every structural system adopted. Amongst the structural systems that are adopted world over, diaphragm with rigid and semi-rigid floor plate are adopted widely in the analysis. This research focuses on the backstay effect i.e. podium structural interaction with the tower area and consideration of retaining wall as increment of lateral stiffness as specified in latest tall building code IS6700:2016 for low and high rise structures. In the current study models were prepared with low to high rise storeys with rigid and flexible diaphragms considering backstay diaphragm placing tower at center and corner. The models were subjected to seismic forces; response spectrum along with the combination of the gravity loads. The structural responses like natural periods, base shear, displacement and inter storey drift were also studied.


Author(s):  
Yasser Salem ◽  
Devindar Aulakh ◽  
Giuseppe Lomiento

The diagrid structure system has recently gained popularity as an effective structural system for high rise buildings. The effectiveness of the system relies on the truss action developed by the perimeter diagrid system to resist lateral loads. In active seismic zones, ductile performance of the lateral resisting system is highly desired to dissipate energy developed in the structure from the ground shaking. In this study, the seismic performance of the diagrid system is investigated. Non-linear static pushover analysis followed by non-linear dynamic analysis were conducted to study the inelastic behaviour of diagrid systems. Through methods of analysis, the response modification factor of the modelled system was calculated. The results indicate that the reserve strength of a diagrid system is comparable to and often greater than that of many other lateral structure systems, such as steel special truss moment resisting frames and other structural systems as prescribed by the ASCE 7-10.


2010 ◽  
Vol 163-167 ◽  
pp. 3939-3942
Author(s):  
Zhong Quan Zou ◽  
Li Ping Zhou ◽  
Guo Jing He

Energy-based modal pushover analysis method has been proved to be an appropriate approach to perform seismic analysis for structures whose high mode effect is not negligible. It directly establishes the capacity spectrum based on energy increments, which corrects the deficiency of conventional modal pushover method that the capacity curve would not be unique or even be retorted while the base shear-top displacement curve is established with respect to different reference nodes of the structure. In this paper, a continuous rigid frame bridge with tall piers in seismic zone is analyzed with EMPA method. The results showed that EMPA is more adaptable than conventional methods, and the seismic performance of the bridge can satisfy the demand of the design code.


2018 ◽  
Vol 877 ◽  
pp. 299-304
Author(s):  
S. Swathi ◽  
Katta Venkataramana ◽  
C. Rajasekaran

Performance-based seismic design (PBSD) is an approach, in which the design aim is to deliver a structure capable of meeting certain predictable performance objectives under different levels of earthquake motions. In order to ensure the desirable performance of buildings or structures, the structural parameters such as strength, stiffness and ductility or deformability should be reasonably proportioned. Conventional methods of seismic design have the objectives to provide life safety (strength and ductility) and damage control (serviceability drift limits). However, little information is available on how the building reacts to a seismic hazard. The basic concept of PBSD is to provide the engineers with the capability to design buildings that have a predictable and reliable performance in case of a seismic hazard. This procedure compares the capacity of a structure (in the form of a pushover curve), with the demand imposed by the earthquake on the structure (in the form of response spectra).The present paper determines the performance point of the structure, using Capacity Spectrum Method (CSM). A 7-storey building has been considered for this purpose and pushover analysis is carried out. An attempt has been made to perform the seismic analysis for the building, to obtain the performance point.


2010 ◽  
Vol 163-167 ◽  
pp. 3918-3924
Author(s):  
Jun Teng ◽  
Hu Bing Tu ◽  
Huan Lin Mao ◽  
Ying Liang Qiu

As an important seismic analysis method, Pushover is widely used in high-rise buildings, while there is still lack of investigation on applicability of Pushover analysis on diagonal grid structural system. Two structures with height 144 and 288 meters are respectively built, and then Pushover analysis and Incremental dynamic analysis are conducted. Results calculated by two different methods are compared, including top displacement vs. base shear curve, inter-story drift vs. inter-story shear curve, distribution of inter-story drift angle along the building height and plastic developing sequence of structural weak positions. Meanwhile, influence of three lateral load patterns (uniform pattern,inverted triangle pattern and SRSS pattern) on the results is investigated. Analysis results demonstrate that Pushover analysis can in some extent reflect seismic performance of structures and SRSS load pattern can better capture global and local information of structures compared with other two patterns.


Author(s):  
Deepali Vasudev

Abstract: Any Structure that is designed in today’s world has to be designed not only for aesthetics but also for stability. These days high rise multi storied structures are quiet prominent. These types of structures, should not only be designed for aesthetic point of view but also must be designed to resist earthquake forces which are subjected on these structures. These earthquake forces acting on the structures are also known as seismic forces. Due to architectural purposes, some buildings, have openings, provided in them, this creates structural discontinuities in the building. These openings or discontinuities can change the load transfer path of the structures which may cause significant change in the building behavior, under the application of the seismic forces. In this paper pushover analysis is carried out to study the behavior of the building in case of architectural opening for staircase or cut outs etc which results in discontinuity in the structure. Keywords: Diaphragm, Discontinuity, ETABS, Pushover Analysis, Seismic


Author(s):  
Mayuri N. Ade ◽  
Prof. G. D. Dhawle ◽  
Prof. M. M. Lohe

Tall building development is rapidly growing almost everywhere in the world acquainting new difficulties that need to be met with, through engineering evaluation. In tall buildings, lateral loads generated by earthquake or wind load are frequently resisted by providing coupled shear walls. But as the height increases, the building becomes taller and the efficiency of the tall building greatly depends on lateral stiffness and resistance capacity. So, a system called outrigger is introduced which improves overturning stiffness and strength by connecting shear wall core to outer columns. When the Structure is subjected to Lateral forces, the Outrigger and the columns resist the rotation of the core and thus significantly reduce the lateral deflection and base moment, which would have arisen in a free core. During the last three decades, numerous studies have been carried out on the analysis and behaviour of outrigger structures. But this question is remained that how many outriggers system is needed in tall buildings. (Using Staad-Pro)


Author(s):  
T.G.N.C. Vamsi Krishna ◽  
◽  
V. Amani ◽  
P.S. Sunil Kumar* ◽  
CH. Naveen Kumar ◽  
...  

An earthquake is a sudden, rapid shaking of the earth caused by the breaking and shifting of rock beneath the earth’s surface. Earthquakes are among the most powerful events on earth, and their results can be terrifying. In0general for0design of tall0buildings both0wind as well0as earthquake0loads need0to be0considered. Governing0criteria for0carrying out0dynamic analyses0for earthquake0loads are different0from wind0loads. However many tall buildings are not so resistant in lateral loads due to earthquake. Reinforced concrete multi-storied buildings in India were for the first time subjected to a strong ground motion shaking in Bhuj earthquake. It has been concluded that the principal reasons of failure may be attributed to soft stories, floating columns, mass irregularities, poor quality of construction materials faulty construction methods, unstable earthquake response, soil and infrastructure, which were determined to cause damage to the attached structure. High-rise buildings are in high demand due to global urbanization and population growth, and high-rise buildings are likely to suffer the most damage from earthquakes. Since earthquake forces are irregular and unnatural in nature, engineering tools need to be sharpened to analyze the structure in the work of these forces. In this study, to understand the behaviour of structure located in seismic zones III for G+15 Multi-Purpose storey building model is considered for study. Performance of frame is studied through Response Spectrum analysis and comparison is made on shear force, storey drift, storey displacement and storey stiffness.


Advances in construction technology, materials, structural systems and analytical methods for analysis and design facilitated the growth of high rise buildings. Structural design of high rise buildings is governed by lateral loads due to wind or earthquake. Lateral load resistance of structure is provided by interior structural system or exterior structural system. It is very important that the selected structural system is such that the structural elements are utilized effectively while satisfying design requirements. Recently diagrid structural system is adopted in tall buildings due to its structural efficiency and flexibility in architectural planning. diagrid structure consists of inclined columns on the exterior surface of building. Due to inclined columns lateral loads are resisted by axial action of the diagonal. lateral shear can be carried by the diagonals on the periphery of building. Analysis and design of 30 story diagrid steel building is presented. A regular floor plan of 36 m × 36m size is considered. ETABS software is used for modeling and analysis of structural members. All structural members are designed as per IS 800:2007 considering all load combinations. Earthquake is considered for analysis of the structure. Load distribution in diagrid system is also studied for 36 storey building. Similarly, analysis for the different diagrid pattern is carried out. Comparison of analysis results in terms of time period, top storey displacement and storey drift is presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document