scholarly journals Real Time Object Detection Using YoloReal Time Object Detection Using Yolo

Author(s):  
Ankith I

Abstract: Object detection is related to computer vision and involves identifying the kinds of objects that have been detected. It is challenging to detect and classify objects. Recent advances in deep learning have allowed it to detect objects more accurately. In the past, there were several methods or tools used: R-CNN, Fast-RCNN, Faster-RCNN, YOLO, SSD, etc. This research focuses on "You Only Look Once" (YOLO) as a type of Convolutional Neural Network. Results will be accurate and timely when tested. So, we analysed YOLOv3's work by using Yolo3-tiny to detect both image and video objects. Keywords: YOLO, Intersection over Union (IOU), Anchor box, Non-Max Suppression, YOLO application, limitation.

Author(s):  
S Gopi Naik

Abstract: The plan is to establish an integrated system that can manage high-quality visual information and also detect weapons quickly and efficiently. It is obtained by integrating ARM-based computer vision and optimization algorithms with deep neural networks able to detect the presence of a threat. The whole system is connected to a Raspberry Pi module, which will capture live broadcasting and evaluate it using a deep convolutional neural network. Due to the intimate interaction between object identification and video and image analysis in real-time objects, By generating sophisticated ensembles that incorporate various low-level picture features with high-level information from object detection and scenario classifiers, their performance can quickly plateau. Deep learning models, which can learn semantic, high-level, deeper features, have been developed to overcome the issues that are present in optimization algorithms. It presents a review of deep learning based object detection frameworks that use Convolutional Neural Network layers for better understanding of object detection. The Mobile-Net SSD model behaves differently in network design, training methods, and optimization functions, among other things. The crime rate in suspicious areas has been reduced as a consequence of weapon detection. However, security is always a major concern in human life. The Raspberry Pi module, or computer vision, has been extensively used in the detection and monitoring of weapons. Due to the growing rate of human safety protection, privacy and the integration of live broadcasting systems which can detect and analyse images, suspicious areas are becoming indispensable in intelligence. This process uses a Mobile-Net SSD algorithm to achieve automatic weapons and object detection. Keywords: Computer Vision, Weapon and Object Detection, Raspberry Pi Camera, RTSP, SMTP, Mobile-Net SSD, CNN, Artificial Intelligence.


Author(s):  
Zhiyong Gao ◽  
Jianhong Xiang

Background: While detecting the object directly from the 3D point cloud, the natural 3D patterns and invariance of 3D data are often obscure. Objective: In this work, we aimed at studying the 3D object detection from discrete, disordered and sparse 3D point clouds. Methods: The CNN is composed of the frustum sequence module, 3D instance segmentation module S-NET, 3D point cloud transformation module T-NET, and 3D boundary box estimation module E-NET. The search space of the object is determined by the frustum sequence module. The instance segmentation of the point cloud is performed by the 3D instance segmentation module. The 3D coordinates of the object are confirmed by the transformation module and the 3D bounding box estimation module. Results: Evaluated on KITTI benchmark dataset, our method outperforms the state of the art by remarkable margins while having real-time capability. Conclusion: We achieve real-time 3D object detection by proposing an improved convolutional neural network (CNN) based on image-driven point clouds.


2021 ◽  
Vol 336 ◽  
pp. 07004
Author(s):  
Ruoyu Fang ◽  
Cheng Cai

Obstacle detection and target tracking are two major issues for intelligent autonomous vehicles. This paper proposes a new scheme to achieve target tracking and real-time obstacle detection of obstacles based on computer vision. ResNet-18 deep learning neural network is utilized for obstacle detection and Yolo-v3 deep learning neural network is employed for real-time target tracking. These two trained models can be deployed on an autonomous vehicle equipped with an NVIDIA Jetson Nano motherboard. The autonomous vehicle moves to avoid obstacles and follow tracked targets by camera. Adjusting the steering and movement of the autonomous vehicle according to the PID algorithm during the movement, therefore, will help the proposed vehicle achieve stable and precise tracking.


2020 ◽  
Vol 12 (22) ◽  
pp. 9785
Author(s):  
Kisu Lee ◽  
Goopyo Hong ◽  
Lee Sael ◽  
Sanghyo Lee ◽  
Ha Young Kim

Defects in residential building façades affect the structural integrity of buildings and degrade external appearances. Defects in a building façade are typically managed using manpower during maintenance. This approach is time-consuming, yields subjective results, and can lead to accidents or casualties. To address this, we propose a building façade monitoring system that utilizes an object detection method based on deep learning to efficiently manage defects by minimizing the involvement of manpower. The dataset used for training a deep-learning-based network contains actual residential building façade images. Various building designs in these raw images make it difficult to detect defects because of their various types and complex backgrounds. We employed the faster regions with convolutional neural network (Faster R-CNN) structure for more accurate defect detection in such environments, achieving an average precision (intersection over union (IoU) = 0.5) of 62.7% for all types of trained defects. As it is difficult to detect defects in a training environment, it is necessary to improve the performance of the network. However, the object detection network employed in this study yields an excellent performance in complex real-world images, indicating the possibility of developing a system that would detect defects in more types of building façades.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6779
Author(s):  
Byung-Gil Han ◽  
Joon-Goo Lee ◽  
Kil-Taek Lim ◽  
Doo-Hyun Choi

With the increase in research cases of the application of a convolutional neural network (CNN)-based object detection technology, studies on the light-weight CNN models that can be performed in real time on the edge-computing devices are also increasing. This paper proposed scalable convolutional blocks that can be easily designed CNN networks of You Only Look Once (YOLO) detector which have the balanced processing speed and accuracy of the target edge-computing devices considering different performances by exchanging the proposed blocks simply. The maximum number of kernels of the convolutional layer was determined through simple but intuitive speed comparison tests for three edge-computing devices to be considered. The scalable convolutional blocks were designed in consideration of the limited maximum number of kernels to detect objects in real time on these edge-computing devices. Three scalable and fast YOLO detectors (SF-YOLO) which designed using the proposed scalable convolutional blocks compared the processing speed and accuracy with several conventional light-weight YOLO detectors on the edge-computing devices. When compared with YOLOv3-tiny, SF-YOLO was seen to be 2 times faster than the previous processing speed but with the same accuracy as YOLOv3-tiny, and also, a 48% improved processing speed than the YOLOv3-tiny-PRN which is the processing speed improvement model. Also, even in the large SF-YOLO model that focuses on the accuracy performance, it achieved a 10% faster processing speed with better accuracy of 40.4% [email protected] in the MS COCO dataset than YOLOv4-tiny model.


2020 ◽  
Vol 226 ◽  
pp. 02020
Author(s):  
Alexey V. Stadnik ◽  
Pavel S. Sazhin ◽  
Slavomir Hnatic

The performance of neural networks is one of the most important topics in the field of computer vision. In this work, we analyze the speed of object detection using the well-known YOLOv3 neural network architecture in different frameworks under different hardware requirements. We obtain results, which allow us to formulate preliminary qualitative conclusions about the feasibility of various hardware scenarios to solve tasks in real-time environments.


2019 ◽  
Vol 34 (11) ◽  
pp. 4924-4931 ◽  
Author(s):  
Daichi Kitaguchi ◽  
Nobuyoshi Takeshita ◽  
Hiroki Matsuzaki ◽  
Hiroaki Takano ◽  
Yohei Owada ◽  
...  

2020 ◽  
Vol 17 (8) ◽  
pp. 3478-3483
Author(s):  
V. Sravan Chowdary ◽  
G. Penchala Sai Teja ◽  
D. Mounesh ◽  
G. Manideep ◽  
C. T. Manimegalai

Road injuries are a big drawback in society for a few time currently. Ignoring sign boards while moving on roads has significantly become a major cause for road accidents. Thus we came up with an approach to face this issue by detecting the sign board and recognition of sign board. At this moment there are several deep learning models for object detection using totally different algorithms like RCNN, faster RCNN, SPP-net, etc. We prefer to use Yolo-3, which improves the speed and precision of object detection. This algorithm will increase the accuracy by utilizing residual units, skip connections and up-sampling. This algorithm uses a framework named Dark-net. This framework is intended specifically to create the neural network for training the Yolo algorithm. To thoroughly detect the sign board, we used this algorithm.


Author(s):  
M A Isayev ◽  
D A Savelyev

The comparison of different convolutional neural networks which are the core of the most actual solutions in the computer vision area is considers in hhe paper. The study includes benchmarks of this state-of-the-art solutions by some criteria, such as mAP (mean average precision), FPS (frames per seconds), for the possibility of real-time usability. It is concluded on the best convolutional neural network model and deep learning methods that were used at particular solution.


Sign in / Sign up

Export Citation Format

Share Document