scholarly journals Individual and combined use of ultraviolet (UV) light with hydrogen peroxide, peracetic acid, and ferrate(VI) for wastewater disinfection

2017 ◽  
Author(s):  
Natalie Linklater
2007 ◽  
Vol 79 (12) ◽  
pp. 2373-2379 ◽  
Author(s):  
V. Mezzanotte ◽  
M. Antonelli ◽  
S. Citterio ◽  
C. Nurizzo

ACS Omega ◽  
2021 ◽  
Author(s):  
Shu-shu Zhong ◽  
Jun Zhang ◽  
Ze-hua Liu ◽  
Zhi Dang ◽  
Yu Liu

Proceedings ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 44
Author(s):  
Kozak ◽  
Włodarczyk-Makuła

The aim of the research was to determine the effectiveness of removing micro-organic pollutants, including PAHs, using the modified Fenton method. The tested material was pretreated coke wastewater, in which the initial chemical oxygen demand (COD) value and initial polycyclic aromatic hydrocarbons (PAHs) concentration were determined. The samples were then subjected to an oxidation procedure. Before the process, the pH was adjusted to 3.5–3.8. Next, the following doses of sodium carbonate—hydrogen peroxide (2/3): 1.2 g/L, 1.5 g/L and 2 g/L, and a constant dose of iron sulphate were added. The next step was exposing the samples to UV light for 6 min and separating the organic matrix from the samples of wastewater. After the tests, the final value of the COD and the final PAHs concentration were determined. The average content of organic pollutants in pretreated coke wastewater determined by the COD index was 538 mg/L, and after the oxidation process, the COD index decreased in the range from 9 to 29%. The efficiency of the degradation of the sum of 16 PAHs was varied and was in the range of 94–97.6%. The research results show that sodium carbonate—hydrogen peroxide (2/3) can be used for the degradation of organic pollutants, such as PAHs, in the modified Fenton process.


2019 ◽  
Vol 82 (11) ◽  
pp. 1896-1900
Author(s):  
A. M. JONES-IBARRA ◽  
C. Z. ALVARADO ◽  
CRAIG D. COUFAL ◽  
T. MATTHEW TAYLOR

ABSTRACT Chicken carcass frames are used to obtain mechanically separated chicken (MSC) for use in other further processed food products. Previous foodborne disease outbreaks involving Salmonella-contaminated MSC have demonstrated the potential for the human pathogen to be transmitted to consumers via MSC. The current study evaluated the efficacy of multiple treatments applied to the surfaces of chicken carcass frames to reduce microbial loads on noninoculated frames and frames inoculated with a cocktail of Salmonella enterica serovar Enteritidis and Salmonella enterica serovar Typhimurium. Inoculated or noninoculated frames were left untreated (control) or were subjected to treatment using a prototype sanitization apparatus. Treatments consisted of (i) a sterile water rinse, (ii) a water rinse followed by 5 s of UV-C light application, or (iii) an advanced oxidation process (AOP) combining 5 or 7% (v/v) hydrogen peroxide (H2O2) with UV-C light. Treatment with 7% H2O2 and UV-C light reduced numbers of aerobic bacteria by up to 1.5 log CFU per frame (P < 0.05); reductions in aerobic bacteria subjected to other treatments did not statistically differ from one another (initial mean load on nontreated frames: 3.6 ± 0.1 log CFU per frame). Salmonella numbers (mean load on inoculated, nontreated control was 5.6 ± 0.2 log CFU per frame) were maximally reduced by AOP application in comparison with other treatments. No difference in Salmonella reductions obtained by 5% H2O2 (1.1 log CFU per frame) was detected compared with that obtained following 7% H2O2 use (1.0 log CFU per frame). The AOP treatment for sanitization of chicken carcass frames reduces microbial contamination on chicken carcass frames that are subsequently used for manufacture of MSC.


Pathogens ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 24
Author(s):  
Akikazu Sakudo ◽  
Daiki Anraku ◽  
Tomomasa Itarashiki

Prion diseases are proteopathies that cause neurodegenerative disorders in humans and animals. Prion is highly resistant to both chemical and physical inactivation. Here, vaporized gas derived from a hydrogen peroxide–peracetic acid mixture (VHPPA) was evaluated for its ability to inactivate prion using a STERIACE 100 instrument (Saraya Co., Ltd.). Brain homogenates of scrapie (Chandler strain) prion-infected mice were placed on a cover glass, air-dried, sealed in a Tyvek package, and subjected to VHPPA treatment at 50–55 °C using 8% hydrogen peroxide and <10% peracetic acid for 47 min (standard mode, SD) or 30 min (quick mode, QC). Untreated control samples were prepared in the same way but without VHPPA. The resulting samples were treated with proteinase K (PK) to separate PK-resistant prion protein (PrPres), as a marker of the abnormal isoform (PrPSc). Immunoblotting showed that PrPres was reduced by both SD and QC VHPPA treatments. PrPres bands were detected after protein misfolding cyclic amplification of control but not VHPPA-treated samples. In mice injected with prion samples, VHPPA treatment of prion significantly prolonged survival relative to untreated samples, suggesting that it decreases prion infectivity. Taken together, the results show that VHPPA inactivates prions and might be applied to the sterilization of contaminated heat-sensitive medical devices.


1992 ◽  
Vol 27 (1) ◽  
pp. 57-68 ◽  
Author(s):  
D.W. Sundstrom ◽  
B.A. Weir ◽  
T. A. Barber ◽  
H. E. Klei

Abstract This project investigated the destruction of organic compounds and microorganisms in water by ultraviolet catalyzed oxidation using hydrogen peroxide as the oxidizing agent. The combination of UV light and hydrogen peroxide was effective in decomposing all of the organic compounds studied. The rates of destruction increased with increasing peroxide concentration and UV light intensity, and were highly dependent on chemical structure. The destruction of mixtures of organic compounds showed strong interactions between reacting components. The inactivation of E. coli and B. subtilis spores by UV light and/or hydrogen peroxide was studied in flat plate reactors. By using thin liquid films, the combination of UV light and peroxide greatly increased the rates of inactivation of both microorganisms. The results were correlated by a mixed second order kinetic model.


Endoscopy ◽  
2008 ◽  
Vol 40 (03) ◽  
pp. 231-231 ◽  
Author(s):  
R. Coriat ◽  
U. Chaput ◽  
Z. Ismaili ◽  
S. Chaussade

2012 ◽  
Vol 45 (8) ◽  
pp. 581-587
Author(s):  
Cheng-Zhu Zhu ◽  
Qiao-Hong Liu ◽  
Jun Lu ◽  
Shu-Chuan Peng ◽  
Hui-Qi Hou

Sign in / Sign up

Export Citation Format

Share Document